Level spacing statistics for two-dimensional massless Dirac billiards

被引:13
|
作者
Huang Liang [1 ,2 ,3 ]
Xu Hong-Ya [1 ,2 ,3 ]
Lai Ying-Cheng [3 ,4 ,5 ]
Grebogid, Celso [5 ]
机构
[1] Lanzhou Univ, Inst Computat Phys & Complex Syst, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Key Lab Magnetism & Magnet Mat MOE, Lanzhou 730000, Peoples R China
[3] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[4] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
[5] Univ Aberdeen, Kings Coll, Sch Nat & Comp Sci, Inst Complex Syst & Math Biol, Aberdeen AB9 1FX, Scotland
基金
中国国家自然科学基金;
关键词
quantum chaos; level spacing statistics; Dirac billiards; graphene billiards; TIME-REVERSAL SYMMETRY; TOPOLOGICAL INSULATORS; QUANTUM BILLIARDS; CARBON NANOTUBES; MAGNETIC-FIELDS; GRAPHENE; CHAOS; SCATTERING; TRANSPORT; PHASE;
D O I
10.1088/1674-1056/23/7/070507
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Classical-quantum correspondence has been an intriguing issue ever since quantum theory was proposed. The searching for signatures of classically nonintegrable dynamics in quantum systems comprises the interesting field of quantum chaos. In this short review, we shall go over recent efforts of extending the understanding of quantum chaos to relativistic cases. We shall focus on the level spacing statistics for two-dimensional massless Dirac billiards, i.e., particles confined in a closed region. We shall discuss the works for both the particle described by the massless Dirac equation (orWeyl equation) and the quasiparticle from graphene. Although the equations are the same, the boundary conditions are typically different, rendering distinct level spacing statistics.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Waveguiding in massive two-dimensional Dirac systems
    Ibarra-Sierra, V. G.
    Robles-Raygoza, E. J.
    Sandoval-Santana, J. C.
    Carrillo-Bastos, R.
    JOURNAL OF APPLIED PHYSICS, 2023, 134 (12)
  • [42] Intrinsic plasmons in two-dimensional Dirac materials
    Das Sarma, S.
    Li, Qiuzi
    PHYSICAL REVIEW B, 2013, 87 (23)
  • [43] Designing Dirac points in two-dimensional lattices
    Asano, Kenichi
    Hotta, Chisa
    PHYSICAL REVIEW B, 2011, 83 (24):
  • [44] Superconductivity in two-dimensional disordered Dirac semimetals
    Wang, Jing
    Zhao, Peng-Lu
    Wang, Jing-Rong
    Liu, Guo-Zhu
    PHYSICAL REVIEW B, 2017, 95 (05)
  • [45] Avoided-level-crossing statistics in open chaotic billiards
    Poli, Charles
    Dietz, Barbara
    Legrand, Olivier
    Mortessagne, Fabrice
    Richter, Achim
    PHYSICAL REVIEW E, 2009, 80 (03):
  • [46] Band structure of a two-dimensional Dirac semimetal from cyclotron resonance
    Shuvaev, A. M.
    Dziom, V.
    Mikhailov, N. N.
    Kvon, Z. D.
    Shao, Y.
    Basov, D. N.
    Pimenov, A.
    PHYSICAL REVIEW B, 2017, 96 (15)
  • [47] Electrical confinement in a spectrum of two-dimensional Dirac materials with classically integrable, mixed, and chaotic dynamics
    Han, Chen-Di
    Xu, Hong-Ya
    Lai, Ying-Cheng
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [48] Modeling the Dynamics of Massless Charge Carries is Two-Dimensional System
    Levenets, S. A.
    Verevin, T. T.
    Makhankov, A., V
    Panferov, A. D.
    Pirogov, S. O.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2020, 20 (01): : 127 - 137
  • [49] Twelve inequivalent Dirac cones in two-dimensional ZrB2
    Lopez-Bezanilla, Alejandro
    PHYSICAL REVIEW MATERIALS, 2018, 2 (01):
  • [50] Role of acoustic phonons in exotic conductivity of two-dimensional Dirac electrons
    Suzumura, Yoshikazu
    Ogata, Masao
    PHYSICAL REVIEW B, 2018, 98 (16)