Level spacing statistics for two-dimensional massless Dirac billiards

被引:13
|
作者
Huang Liang [1 ,2 ,3 ]
Xu Hong-Ya [1 ,2 ,3 ]
Lai Ying-Cheng [3 ,4 ,5 ]
Grebogid, Celso [5 ]
机构
[1] Lanzhou Univ, Inst Computat Phys & Complex Syst, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Key Lab Magnetism & Magnet Mat MOE, Lanzhou 730000, Peoples R China
[3] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[4] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
[5] Univ Aberdeen, Kings Coll, Sch Nat & Comp Sci, Inst Complex Syst & Math Biol, Aberdeen AB9 1FX, Scotland
基金
中国国家自然科学基金;
关键词
quantum chaos; level spacing statistics; Dirac billiards; graphene billiards; TIME-REVERSAL SYMMETRY; TOPOLOGICAL INSULATORS; QUANTUM BILLIARDS; CARBON NANOTUBES; MAGNETIC-FIELDS; GRAPHENE; CHAOS; SCATTERING; TRANSPORT; PHASE;
D O I
10.1088/1674-1056/23/7/070507
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Classical-quantum correspondence has been an intriguing issue ever since quantum theory was proposed. The searching for signatures of classically nonintegrable dynamics in quantum systems comprises the interesting field of quantum chaos. In this short review, we shall go over recent efforts of extending the understanding of quantum chaos to relativistic cases. We shall focus on the level spacing statistics for two-dimensional massless Dirac billiards, i.e., particles confined in a closed region. We shall discuss the works for both the particle described by the massless Dirac equation (orWeyl equation) and the quasiparticle from graphene. Although the equations are the same, the boundary conditions are typically different, rendering distinct level spacing statistics.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Coexistence of Fermi arcs with two-dimensional gapless Dirac states
    Grushin, Adolfo G.
    Venderbos, Joern W. F.
    Bardarson, Jens H.
    PHYSICAL REVIEW B, 2015, 91 (12):
  • [32] Phase diagram of a two-dimensional dirty tilted Dirac semimetal
    Lee, Yu-Li
    Lee, Yu-Wen
    PHYSICAL REVIEW B, 2019, 100 (07)
  • [33] Optical response of two-dimensional Dirac materials with a flat band
    Han, Chen-Di
    Lai, Ying-Cheng
    PHYSICAL REVIEW B, 2022, 105 (15)
  • [34] Infrared magneto-spectroscopy of two-dimensional and three-dimensional massless fermions: A comparison
    Orlita, M.
    Faugeras, C.
    Barra, A. -L.
    Martinez, G.
    Potemski, M.
    Basko, D. M.
    Zholudev, M. S.
    Teppe, F.
    Knap, W.
    Gavrilenko, V. I.
    Mikhailov, N. N.
    Dvoretskii, S. A.
    Neugebauer, P.
    Berger, C.
    de Heer, W. A.
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (11)
  • [35] Self-similar fluctuations of classical origin in level-spacing statistics of quantum lemon billiards
    Makino, Hironori
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2018, 2018 (07):
  • [36] Two-dimensional Dirac fermion in presence of an asymmetric vector potential
    Ishkhanyan, A.
    Jakubsky, V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (49)
  • [37] Robustness of persistent currents in two-dimensional Dirac systems with disorder
    Ying, Lei
    Lai, Ying-Cheng
    PHYSICAL REVIEW B, 2017, 96 (16)
  • [38] Quasi-two-dimensional massless Dirac fermions in CaMnSb2
    He, J. B.
    Fu, Y.
    Zhao, L. X.
    Liang, H.
    Chen, D.
    Leng, Y. M.
    Wang, X. M.
    Li, J.
    Zhang, S.
    Xue, M. Q.
    Li, C. H.
    Zhang, P.
    Ren, Z. A.
    Chen, G. F.
    PHYSICAL REVIEW B, 2017, 95 (04)
  • [39] The rare two-dimensional materials with Dirac cones
    Jinying Wang
    Shibin Deng
    Zhongfan Liu
    Zhirong Liu
    NationalScienceReview, 2015, 2 (01) : 22 - 39
  • [40] Spin-dependent edge states in two-dimensional Dirac materials with a flat band
    Ye, Li-Li
    Han, Chen-Di
    Lai, Ying-Cheng
    PHYSICAL REVIEW B, 2023, 108 (23)