Level spacing statistics for two-dimensional massless Dirac billiards

被引:13
|
作者
Huang Liang [1 ,2 ,3 ]
Xu Hong-Ya [1 ,2 ,3 ]
Lai Ying-Cheng [3 ,4 ,5 ]
Grebogid, Celso [5 ]
机构
[1] Lanzhou Univ, Inst Computat Phys & Complex Syst, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Key Lab Magnetism & Magnet Mat MOE, Lanzhou 730000, Peoples R China
[3] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[4] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
[5] Univ Aberdeen, Kings Coll, Sch Nat & Comp Sci, Inst Complex Syst & Math Biol, Aberdeen AB9 1FX, Scotland
基金
中国国家自然科学基金;
关键词
quantum chaos; level spacing statistics; Dirac billiards; graphene billiards; TIME-REVERSAL SYMMETRY; TOPOLOGICAL INSULATORS; QUANTUM BILLIARDS; CARBON NANOTUBES; MAGNETIC-FIELDS; GRAPHENE; CHAOS; SCATTERING; TRANSPORT; PHASE;
D O I
10.1088/1674-1056/23/7/070507
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Classical-quantum correspondence has been an intriguing issue ever since quantum theory was proposed. The searching for signatures of classically nonintegrable dynamics in quantum systems comprises the interesting field of quantum chaos. In this short review, we shall go over recent efforts of extending the understanding of quantum chaos to relativistic cases. We shall focus on the level spacing statistics for two-dimensional massless Dirac billiards, i.e., particles confined in a closed region. We shall discuss the works for both the particle described by the massless Dirac equation (orWeyl equation) and the quasiparticle from graphene. Although the equations are the same, the boundary conditions are typically different, rendering distinct level spacing statistics.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Dynamical gap generation in a two-dimensional Dirac semimetal with a deformed Dirac
    Xiao, Hai-Xiao
    Wang, Jing-Rong
    Feng, Hong-Tao
    Yin, Pei-Lin
    Zong, Hong-Shi
    PHYSICAL REVIEW B, 2017, 96 (15)
  • [22] Anderson localization and delocalization of massless two-dimensional Dirac electrons in random one-dimensional scalar and vector potentials
    Kim, Seulong
    Kim, Kihong
    PHYSICAL REVIEW B, 2019, 99 (01)
  • [23] Dynamical polarization and plasmons in a two-dimensional system with merging Dirac points
    Pyatkovskiy, P. K.
    Chakraborty, Tapash
    PHYSICAL REVIEW B, 2016, 93 (08)
  • [24] Two-Dimensional Boron Hydride Sheets: High Stability, Massless Dirac Fermions, and Excellent Mechanical Properties
    Jiao, Yalong
    Ma, Fengxian
    Bell, John
    Bilic, Ante
    Du, Aijun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (35) : 10292 - 10295
  • [25] Raman tensor for two-dimensional massive Dirac fermions
    Parlak, Selcuk
    Garate, Ion
    PHYSICAL REVIEW B, 2025, 111 (03)
  • [26] Impurity effects in a two-dimensional nonsymmorphic Dirac semimetal
    He, Chaocheng
    EPL, 2021, 133 (02)
  • [27] A two-dimensional Dirac fermion microscope
    Boggild, Peter
    Caridad, Jose M.
    Stampfer, Christoph
    Calogero, Gaetano
    Papior, Nick Rubner
    Brandbyge, Mads
    NATURE COMMUNICATIONS, 2017, 8 : 15783
  • [28] Two-dimensional Dirac signature of germanene
    Zhang, L.
    Bampoulis, P.
    van Houselt, A.
    Zandvliet, H. J. W.
    APPLIED PHYSICS LETTERS, 2015, 107 (11)
  • [29] Two-dimensional Dirac fermions in the presence of long-range correlated disorder
    Fedorenko, Andrei A.
    Carpentier, David
    Orignac, Edmond
    PHYSICAL REVIEW B, 2012, 85 (12)
  • [30] Effects of Dirac cone tilt in a two-dimensional Dirac semimetal
    Yang, Zhao-Kun
    Wang, Jing-Rong
    Liu, Guo-Zhu
    PHYSICAL REVIEW B, 2018, 98 (19)