Level spacing statistics for two-dimensional massless Dirac billiards

被引:13
|
作者
Huang Liang [1 ,2 ,3 ]
Xu Hong-Ya [1 ,2 ,3 ]
Lai Ying-Cheng [3 ,4 ,5 ]
Grebogid, Celso [5 ]
机构
[1] Lanzhou Univ, Inst Computat Phys & Complex Syst, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Key Lab Magnetism & Magnet Mat MOE, Lanzhou 730000, Peoples R China
[3] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[4] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
[5] Univ Aberdeen, Kings Coll, Sch Nat & Comp Sci, Inst Complex Syst & Math Biol, Aberdeen AB9 1FX, Scotland
基金
中国国家自然科学基金;
关键词
quantum chaos; level spacing statistics; Dirac billiards; graphene billiards; TIME-REVERSAL SYMMETRY; TOPOLOGICAL INSULATORS; QUANTUM BILLIARDS; CARBON NANOTUBES; MAGNETIC-FIELDS; GRAPHENE; CHAOS; SCATTERING; TRANSPORT; PHASE;
D O I
10.1088/1674-1056/23/7/070507
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Classical-quantum correspondence has been an intriguing issue ever since quantum theory was proposed. The searching for signatures of classically nonintegrable dynamics in quantum systems comprises the interesting field of quantum chaos. In this short review, we shall go over recent efforts of extending the understanding of quantum chaos to relativistic cases. We shall focus on the level spacing statistics for two-dimensional massless Dirac billiards, i.e., particles confined in a closed region. We shall discuss the works for both the particle described by the massless Dirac equation (orWeyl equation) and the quasiparticle from graphene. Although the equations are the same, the boundary conditions are typically different, rendering distinct level spacing statistics.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Optical Thouless conductance and level-spacing statistics in two-dimensional Anderson localizing systems
    Mondal, Sandip
    Kumar, Randhir
    Kamp, Martin
    Mujumdar, Sushil
    PHYSICAL REVIEW B, 2019, 100 (06)
  • [23] Making Massless Dirac Fermions from a Patterned Two-Dimensional Electron Gas
    Park, Cheol-Hwan
    Louie, Steven G.
    NANO LETTERS, 2009, 9 (05) : 1793 - 1797
  • [24] Theory of in-plane magnetoresistance in two-dimensional massless Dirac fermion system
    Morinari, Takao
    Tohyama, Takami
    PHYSICAL REVIEW B, 2010, 82 (16):
  • [25] Relativistic quantum level-spacing statistics in chaotic graphene billiards
    Huang, Liang
    Lai, Ying-Cheng
    Grebogi, Celso
    PHYSICAL REVIEW E, 2010, 81 (05):
  • [26] Two-dimensional fermionic Hong-Ou-Mandel interference with massless Dirac fermions
    Khan, M. A.
    Leuenberger, Michael N.
    PHYSICAL REVIEW B, 2014, 90 (07):
  • [27] Darboux partners of Heun-class potentials for the two-dimensional massless Dirac equation
    Schulze-Halberg, Axel
    Ishkhanyan, Artur M.
    ANNALS OF PHYSICS, 2020, 421
  • [28] Worm-graphene: A two-dimensional orthorhombic carbon semimetal with massless Dirac fermion
    Bhattacharya, Debaprem
    Jana, Debnarayan
    APPLIED SURFACE SCIENCE, 2022, 585
  • [29] Conditions of stochasticity of two-dimensional billiards
    Bunimovich, L. A.
    CHAOS, 1991, 1 (02)
  • [30] Level statistics of quasiparticles in disordered two-dimensional superconductors
    Kagalovsky, V
    Horovitz, B
    Avishai, Y
    JOURNAL OF SUPERCONDUCTIVITY, 2003, 16 (02): : 319 - 321