Numerical simulation of hydraulic fracture propagation in shale gas reservoir

被引:68
|
作者
Guo, Tiankui [1 ]
Zhang, Shicheng [2 ]
Zou, Yushi [2 ]
Xiao, Bo [2 ]
机构
[1] China Univ Petr, Coll Petr Engn, Huadong 266580, Peoples R China
[2] China Univ Petr, Coll Petr Engn, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
Shale; Fracture propagation; Numerical simulation; Stress; Natural fracture; CRACK-GROWTH;
D O I
10.1016/j.jngse.2015.07.024
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
On the basis of damage mechanics, a 2D fracture propagation model for seepage-stress-damage coupling in multi-fracture shales was established. Numerical simulations of hydraulic fracture propagation in the presence of natural fractures were carried out, with the use of mechanical parameters of shale reservoirs. The results showed that when hydraulic fractures encountered natural fractures in a shale reservoir, the morphology of fracture propagation was jointly affected by the properties of natural fractures (permeability and mechanical properties of rocks), approaching angle, horizontal stress difference, and flow rate of fracturing fluids. At a small horizontal stress difference, or low approaching angle, or small friction coefficient, natural fractures had increased potential to be damaged due to shear and tension. In such cases, the hydraulic fractures tended to propagate along the natural fractures. As the flow rate of fracturing fluid increased and the width of hydraulic fractures expanded, branch fractures formed easily when the net pressure exceeded the sum of horizontal stress difference and tensile strength of the rocks in which natural fractures with approaching angle smaller than 60 degrees existed. It is seen, a high flow rate will increase the complexity of fracture network. However, when a large number of natural fractures with approaching angles greater than 60 degrees existed, a large flow rate generally led to propagation of hydraulic fractures beyond natural fractures, which was not favored. Hence, an appropriate flow rate should be selected based on the orientations of natural fractures and hydraulic fractures. At the early stage of hydraulic fracturing, a low flow rate was favorable for the initiation of natural fractures and the growth of complexity of regional fractures near the well. Later, a higher flow rate facilitated a further propagation of hydraulic fractures into the depth of reservoir, thus forming a network of fractures. The underlying control mechanism of flow rate and net pressure on the formation of fracture network still requires clarification. The bending degree of the fracture propagation path depended on the ratio of net pressure to stress difference at a distant point as well as on the spacing between fractures. When the horizontal stress difference (<9 MPa) or coefficient of horizontal stress difference (<0.25) was low, the ratio of net pressure to stress difference was high. In this case, the fracture-induced stress obtained an enhanced significance, while the interactions of hydraulic fractures intensified, leading to a non-planar propagation of fractures. In addition, a smaller spacing between fractures caused intensified interactions of hydraulic fractures, so the propagation path altered more easily. This work contributes to the prediction of morphology of fracture propagation in unconventional oil and gas reservoirs. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:847 / 856
页数:10
相关论文
共 50 条
  • [31] Numerical Investigation into the Influence of Bedding Plane on Hydraulic Fracture Network Propagation in Shale Formations
    Zou Yushi
    Ma Xinfang
    Zhang Shicheng
    Zhou Tong
    Li Han
    Rock Mechanics and Rock Engineering, 2016, 49 : 3597 - 3614
  • [32] Numerical simulation of hydraulic fracture propagation in conglomerate reservoirs
    Shi, Xian
    Qin, Yong
    Xu, Hongxing
    Feng, Qihong
    Wang, Sen
    Xu, Peng
    Han, Songcai
    ENGINEERING FRACTURE MECHANICS, 2021, 248
  • [33] Influence of gravel on the propagation pattern of hydraulic fracture in the glutenite reservoir
    Rui, Zhenhua
    Guo, Tiankui
    Feng, Qiang
    Qu, Zhanqing
    Qi, Ning
    Gong, Facheng
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2018, 165 : 627 - 639
  • [34] Numerical simulation of hydraulic fracture propagation in weakly consolidated sandstone reservoirs
    Lin Hai
    Deng Jin-gen
    Liu Wei
    Xie Tao
    Xu Jie
    Liu Hai-long
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2018, 25 (12) : 2944 - 2952
  • [35] Numerical simulation study of fracture propagation by internal plugging hydraulic fracturing
    Guo, Tiankui
    Hao, Tong
    Yang, Xin
    Li, Qun
    Liu, Yongzan
    Chen, Ming
    Qu, Zhanqing
    ENGINEERING FRACTURE MECHANICS, 2024, 310
  • [36] Numerical Simulation of Hydraulic Fracture Propagation in Coal Seams with Discontinuous Natural Fracture Networks
    Wang, Shen
    Li, Huamin
    Li, Dongyin
    PROCESSES, 2018, 6 (08)
  • [37] Advances in Hydraulic Fracture Propagation Research in Shale Reservoirs
    Gong, Xun
    Ma, Xinhua
    Liu, Yuyang
    Li, Guanfang
    MINERALS, 2022, 12 (11)
  • [38] Simulation of Key Influencing Factors of Hydraulic Fracturing Fracture Propagation in a Shale Reservoir Based on the Displacement Discontinuity Method (DDM)
    Ma, Pengcheng
    Tang, Shanfa
    PROCESSES, 2024, 12 (05)
  • [39] Role of natural fractures with topology structure for hydraulic fracture propagation in continental shale reservoir
    Wang, Xiaoming
    Chen, Junbin
    Ren, Dazhong
    Zhu, Jianhong
    ENGINEERING FRACTURE MECHANICS, 2023, 284
  • [40] Numerical study of hydraulic fractures propagation in deep fracture-cavity reservoir based on continuous damage theory
    Luan, Hengjie
    Liu, Mingkang
    Shan, Qinglin
    Jiang, Yujing
    Li, Bo
    Wang, Changsheng
    Cheng, Xianzhen
    FRONTIERS IN ENERGY RESEARCH, 2024, 12