Numerical simulation of hydraulic fracture propagation in shale gas reservoir

被引:68
|
作者
Guo, Tiankui [1 ]
Zhang, Shicheng [2 ]
Zou, Yushi [2 ]
Xiao, Bo [2 ]
机构
[1] China Univ Petr, Coll Petr Engn, Huadong 266580, Peoples R China
[2] China Univ Petr, Coll Petr Engn, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
Shale; Fracture propagation; Numerical simulation; Stress; Natural fracture; CRACK-GROWTH;
D O I
10.1016/j.jngse.2015.07.024
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
On the basis of damage mechanics, a 2D fracture propagation model for seepage-stress-damage coupling in multi-fracture shales was established. Numerical simulations of hydraulic fracture propagation in the presence of natural fractures were carried out, with the use of mechanical parameters of shale reservoirs. The results showed that when hydraulic fractures encountered natural fractures in a shale reservoir, the morphology of fracture propagation was jointly affected by the properties of natural fractures (permeability and mechanical properties of rocks), approaching angle, horizontal stress difference, and flow rate of fracturing fluids. At a small horizontal stress difference, or low approaching angle, or small friction coefficient, natural fractures had increased potential to be damaged due to shear and tension. In such cases, the hydraulic fractures tended to propagate along the natural fractures. As the flow rate of fracturing fluid increased and the width of hydraulic fractures expanded, branch fractures formed easily when the net pressure exceeded the sum of horizontal stress difference and tensile strength of the rocks in which natural fractures with approaching angle smaller than 60 degrees existed. It is seen, a high flow rate will increase the complexity of fracture network. However, when a large number of natural fractures with approaching angles greater than 60 degrees existed, a large flow rate generally led to propagation of hydraulic fractures beyond natural fractures, which was not favored. Hence, an appropriate flow rate should be selected based on the orientations of natural fractures and hydraulic fractures. At the early stage of hydraulic fracturing, a low flow rate was favorable for the initiation of natural fractures and the growth of complexity of regional fractures near the well. Later, a higher flow rate facilitated a further propagation of hydraulic fractures into the depth of reservoir, thus forming a network of fractures. The underlying control mechanism of flow rate and net pressure on the formation of fracture network still requires clarification. The bending degree of the fracture propagation path depended on the ratio of net pressure to stress difference at a distant point as well as on the spacing between fractures. When the horizontal stress difference (<9 MPa) or coefficient of horizontal stress difference (<0.25) was low, the ratio of net pressure to stress difference was high. In this case, the fracture-induced stress obtained an enhanced significance, while the interactions of hydraulic fractures intensified, leading to a non-planar propagation of fractures. In addition, a smaller spacing between fractures caused intensified interactions of hydraulic fractures, so the propagation path altered more easily. This work contributes to the prediction of morphology of fracture propagation in unconventional oil and gas reservoirs. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:847 / 856
页数:10
相关论文
共 50 条
  • [1] Numerical simulation of hydraulic fracture propagation after thermal shock in shale reservoir
    Wu, Jianfa
    Zeng, Bo
    Chen, Liqing
    Huang, Haoyong
    Guo, Yintong
    Guo, Wuhao
    Song, Wenjing
    Li, Junfeng
    JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2024, 14 (04) : 997 - 1015
  • [2] Numerical simulation of hydraulic fracture propagation after thermal shock in shale reservoir
    Jianfa Wu
    Bo Zeng
    Liqing Chen
    Haoyong Huang
    Yintong Guo
    Wuhao Guo
    Wenjing Song
    Junfeng Li
    Journal of Petroleum Exploration and Production Technology, 2024, 14 : 997 - 1015
  • [3] The study on mechanics of hydraulic fracture propagation direction in shale and numerical simulation
    Bohu Zhang
    Binxiang Ji
    Weifeng Liu
    Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2018, 4 : 119 - 127
  • [4] The study on mechanics of hydraulic fracture propagation direction in shale and numerical simulation
    Zhang, Bohu
    Ji, Binxiang
    Liu, Weifeng
    GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2018, 4 (02) : 119 - 127
  • [5] Numerical investigation of hydraulic fracture propagation in the glutenite reservoir
    Li, MingZhong
    Tang, ShuKai
    Guo, Tiankui
    Qi, Minhui
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2018, 15 (05) : 2124 - 2138
  • [6] Multiple hydraulic fracture propagation simulation in deep shale gas reservoir considering thermal effects
    Lin, Ran
    Peng, Sirui
    Zhao, Jinzhou
    Jiang, Hao
    Ren, Lan
    Zhou, Bo
    Wu, Jianfa
    Song, Yi
    Shen, Cheng
    ENGINEERING FRACTURE MECHANICS, 2024, 303
  • [7] Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs
    Zhou Tong
    Wang Haibo
    Li Fengxia
    Li Yuanzhao
    Zou Yushi
    Zhang Chi
    PETROLEUM EXPLORATION AND DEVELOPMENT, 2020, 47 (05) : 1117 - 1130
  • [8] Numerical analysis of hydraulic fracture propagation in deep shale reservoir with different injection strategies
    Xia, Yingjie
    Yao, Mingyu
    Li, Tianjiao
    Yang, Hai
    Tang, Chun'an
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2024, 16 (09) : 3558 - 3574
  • [9] Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs
    Zhou T.
    Wang H.
    Li F.
    Li Y.
    Zou Y.
    Zhang C.
    Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development, 2020, 47 (05): : 1039 - 1051
  • [10] The numerical simulation of thermal recovery based on hydraulic fracture heating technology in shale gas reservoir
    Zhu, Guang-pu
    Yao, Jun
    Sun, Hai
    Zhang, Min
    Xie, Mei-jie
    Sun, Zhi-xue
    Lu, Tao
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2016, 28 : 305 - 316