Symmetry results for systems involving fractional Laplacian

被引:6
作者
Zheng, Xiongjun [1 ]
Wang, Jian [1 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
关键词
Fractional Laplacian; moving planes; system; radial symmetry; NONLINEAR ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; RADIAL SYMMETRY; MONOTONICITY;
D O I
10.1007/s13226-014-0050-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate symmetry results for positive solutions of systems involving the fractional Laplacian {(-Delta)(alpha 1)u(1)(x) = f(1)(u(2)(x)), x is an element of R-N, (-Delta)(alpha 2)u(2)(x) = f(2)(u(1)(x)), x is an element of R-N, (1) lim(vertical bar x vertical bar ->infinity) u(1)(x) - lim(vertical bar x vertical bar ->infinity) u(2)(x) - 0 where N >= 2 and alpha(1), alpha(2) is an element of (0, 1). We prove symmetry properties by the method of moving planes.
引用
收藏
页码:39 / 51
页数:13
相关论文
共 25 条
[11]  
Felmer P., P ROY SOC EDINBURGH
[12]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[13]  
Gidas B., 1981, Math. Anal. Appl., VofAdv, P369
[14]   MONOTONICITY AND SYMMETRY OF SOLUTIONS OF FULLY NONLINEAR ELLIPTIC-EQUATIONS ON UNBOUNDED-DOMAINS [J].
LI, CM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (4-5) :585-615
[15]   RADIAL SYMMETRY OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC-EQUATIONS IN R(N) [J].
LI, Y ;
NI, WM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (5-6) :1043-1054
[16]  
Li YY, 2004, J EUR MATH SOC, V6, P153
[17]   Radial symmetry and monotonicity for an integral equation [J].
Ma, Li ;
Chen, Dezhong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) :943-949
[18]   A Liouville type theorem for an integral system [J].
Ma, Li ;
Chen, Dezhong .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (04) :855-859
[19]   Symmetry and multiplicity for nonlinear elliptic differential equations with boundary blow-up [J].
McKenna, PJ ;
Reichel, W ;
Walter, W .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (07) :1213-1225
[20]  
Pacella F., 2007, HDB DIFFERE IN PRESS