Symmetry results for systems involving fractional Laplacian

被引:6
作者
Zheng, Xiongjun [1 ]
Wang, Jian [1 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
关键词
Fractional Laplacian; moving planes; system; radial symmetry; NONLINEAR ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; RADIAL SYMMETRY; MONOTONICITY;
D O I
10.1007/s13226-014-0050-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate symmetry results for positive solutions of systems involving the fractional Laplacian {(-Delta)(alpha 1)u(1)(x) = f(1)(u(2)(x)), x is an element of R-N, (-Delta)(alpha 2)u(2)(x) = f(2)(u(1)(x)), x is an element of R-N, (1) lim(vertical bar x vertical bar ->infinity) u(1)(x) - lim(vertical bar x vertical bar ->infinity) u(2)(x) - 0 where N >= 2 and alpha(1), alpha(2) is an element of (0, 1). We prove symmetry properties by the method of moving planes.
引用
收藏
页码:39 / 51
页数:13
相关论文
共 25 条
[1]  
Beresticky H., 1991, B SOC BRASILEIRA MAT, V22
[2]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[3]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[4]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343
[5]  
Chen WX, 2005, DISCRETE CONT DYN-A, V12, P347
[6]  
De Figueiredo D.G., 1994, Ann. Sc. Norm. Sup. Pisa, V21, P387
[7]   A geometric inequality and a symmetry result for elliptic systems involving the fractional Laplacian [J].
Dipierro, Serena ;
Pinamonti, Andrea .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (01) :85-119
[8]   Symmetry and monotonicity properties for positive solutions of semi-linear elliptic PDE's [J].
Dolbeault, J ;
Felmer, P .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (5-6) :1153-1169
[9]   Rigidity Results for Elliptic PDEs with Uniform Limits: an Abstract Framework with Applications [J].
Farina, Alberto ;
Valdinoci, Enrico .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (01) :121-141
[10]  
Felmer P., SYMMETRY RE IN PRESS