On the (p, h)-convex function and some integral inequalities

被引:80
|
作者
Fang, Zhong Bo [1 ]
Shi, Renjie [1 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2014年
关键词
(p; h)-convex function; Schur-type inequality; Jensen-type inequality; Hadamard-type inequality;
D O I
10.1186/1029-242X-2014-45
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new class of (p, h)-convex functions which generalize P-functions and convex, h, p, s-convex, Godunova-Levin functions, and we give some properties of the functions. Moreover, we establish the corresponding Schur, Jensen, and Hadamard types of inequalities.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] MULTIPLE-TERM IMPROVEMENTS OF JENSEN'S INEQUALITY FOR ( p , h ) -CONVEX AND ( p , h ) -LOG CONVEX FUNCTIONS
    Huy, Duong Quoc
    Gourty, Abdelmajid
    Ighachane, Mohamed Amine
    Boumazgour, Mohamed
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (03): : 1099 - 1121
  • [42] Hermite-Hadamard and Fejer-type inequalities for strongly reciprocally (p, h)-convex functions of higher order
    Li, Han
    Saleem, Muhammad Shoaib
    Ahmed, Imran
    Aslam, Kiran Naseem
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [43] Some new (p, q)-Dragomir-Agarwal and Iyengar type integral inequalities and their applications
    Awan, Muhammad Uzair
    Talib, Sadia
    Kashuri, Artion
    Slimane, Ibrahim
    Nonlaopon, Kamsing
    Hamed, Y. S.
    AIMS MATHEMATICS, 2022, 7 (04): : 5728 - 5751
  • [44] (p, q)-Hermite-Hadamard inequalities and (p, q)-estimates for midpoint type inequalities via convex and quasi-convex functions
    Kunt, Mehmet
    Iscan, Imdat
    Alp, Necmettin
    Sarikaya, Mehmet Zeki
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 969 - 992
  • [45] Generalized fractal Jensen and Jensen-Mercer inequalities for harmonic convex function with applications
    Butt, Saad Ihsan
    Agarwal, Praveen
    Yousaf, Saba
    Guirao, Juan L. G.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [46] Hermite-Hadamard-Type Inequalities for h-Convex Functions Involving New Fractional Integral Operators with Exponential Kernel
    Wu, Yaoqun
    FRACTAL AND FRACTIONAL, 2022, 6 (06)
  • [47] SOME OSTROWSKI TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS FOR h-CONVEX FUNCTIONS
    Liu, Wenjun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 16 (05) : 998 - 1004
  • [48] MILNE-TYPE INEQUALITIES FOR h- CONVEX FUNCTIONS
    Benaissa, Bouharket
    Sarikaya, Mehmet Zeki
    REAL ANALYSIS EXCHANGE, 2024, 49 (02) : 363 - 376
  • [49] Generalized p-Convex Fuzzy-Interval-Valued Functions and Inequalities Based upon the Fuzzy-Order Relation
    Khan, Muhammad Bilal
    Treanta, Savin
    Budak, Hueseyin
    FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [50] On (p; h)-convex stochastic process
    El-Achky, Jamal
    Taoufiki, Said
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (04) : 1105 - 1116