On the (p, h)-convex function and some integral inequalities

被引:80
|
作者
Fang, Zhong Bo [1 ]
Shi, Renjie [1 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2014年
关键词
(p; h)-convex function; Schur-type inequality; Jensen-type inequality; Hadamard-type inequality;
D O I
10.1186/1029-242X-2014-45
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new class of (p, h)-convex functions which generalize P-functions and convex, h, p, s-convex, Godunova-Levin functions, and we give some properties of the functions. Moreover, we establish the corresponding Schur, Jensen, and Hadamard types of inequalities.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Hermite-Jensen-Mercer-Type Inequalities via Caputo-Fabrizio Fractional Integral for h-Convex Function
    Vivas-Cortez, Miguel
    Saleem, Muhammad Shoaib
    Sajid, Sana
    Zahoor, Muhammad Sajid
    Kashuri, Artion
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [22] (p, q)-Hermite-Hadamard Inequalities for Double Integral and (p, q)-Differentiable Convex Functions
    Prabseang, Julalak
    Nonlaopon, Kamsing
    Tariboon, Jessada
    AXIOMS, 2019, 8 (02)
  • [23] THE (p, q)-ANALOGUES OF SOME INEQUALITIES FOR THE DIGAMMA FUNCTION
    Nantomah, Kwara
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2014, 5 (02): : 10 - 14
  • [24] Fractional (p, q)-Calculus on Finite Intervals and Some Integral Inequalities
    Neang, Pheak
    Nonlaopon, Kamsing
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    SYMMETRY-BASEL, 2021, 13 (03):
  • [25] Some Integral Inequalities via (p, q)-Calculus On Finite Intervals
    Tunc, Mevlut
    Gov, Esra
    FILOMAT, 2021, 35 (05) : 1421 - 1430
  • [26] ON SOME NEW INEQUALITIES OF HADAMARD TYPE INVOLVING h-CONVEX FUNCTIONS
    Sarikaya, M. Z.
    Set, E.
    Ozdemir, M. E.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2010, 79 (02): : 265 - 272
  • [27] On n-polynomial p-convex functions and some related inequalities
    Park, Choonkil
    Chu, Yu-Ming
    Saleem, Muhammad Shoaib
    Jahangir, Nazia
    Rehman, Nasir
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [28] New (p, q)-estimates for different types of integral inequalities via (α, m)-convex mappings
    Kalsoom, Humaira
    Latif, Muhammad Amer
    Rashid, Saima
    Baleanu, Dumitru
    Chu, Yu-Ming
    OPEN MATHEMATICS, 2020, 18 : 1830 - 1854
  • [29] Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (p, J)-convex fuzzy-interval-valued functions
    Khan, Muhammad Bilal
    Santos-Garcia, Gustavo
    Budak, Huseyin
    Treanta, Savin
    Soliman, Mohamed S.
    AIMS MATHEMATICS, 2023, 8 (03): : 7437 - 7470
  • [30] On generalizations of some integral inequalities for preinvex functions via (p, q)-calculus
    Luangboon, Waewta
    Nonlaopon, Kamsing
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Budak, Hueseyin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01):