The Implementation of Mass Spectrometry-Based Proteomics Workflows in Clinical Routines of Acute Myeloid Leukemia: Applicability and Perspectives

被引:14
作者
Hernandez-Valladares, Maria [1 ,2 ]
Bruserud, Oystein [1 ]
Selheim, Frode [2 ,3 ]
机构
[1] Univ Bergen, Dept Clin Sci, N-5021 Bergen, Norway
[2] Univ Bergen, Univ Bergen PROBE, Dept Biomed, Prote Facil, N-5009 Bergen, Norway
[3] Univ Bergen, Dept Biomed, N-5009 Bergen, Norway
关键词
acute myeloid leukemia; clinical proteomics; diagnosis; prognosis; treatment; biomarker; bioinformatics pipeline; laboratory robots; HEMATOPOIETIC-CELL TRANSPLANTATION; EMERGING THERAPEUTIC TARGETS; RISK-STRATIFICATION; QUANTITATIVE PROTEOMICS; COMORBIDITY INDEX; PHOSPHOPEPTIDE ENRICHMENT; COMPUTATIONAL PLATFORM; SAMPLE PREPARATION; AMINO-ACIDS; AML;
D O I
10.3390/ijms21186830
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With the current reproducibility of proteome preparation workflows along with the speed and sensitivity of the mass spectrometers, the transition of the mass spectrometry (MS)-based proteomics technology from biomarker discovery to clinical implementation is under appraisal in the biomedicine community. Therefore, this technology might be implemented soon to detect well-known biomarkers in cancers and other diseases. Acute myeloid leukemia (AML) is an aggressive heterogeneous malignancy that requires intensive treatment to cure the patient. Leukemia relapse is still a major challenge even for patients who have favorable genetic abnormalities. MS-based proteomics could be of great help to both describe the proteome changes of individual patients and identify biomarkers that might encourage specific treatments or clinical strategies. Herein, we will review the advances and availability of the MS-based proteomics strategies that could already be used in clinical proteomics. However, the heterogeneity of complex diseases as AML requires consensus to recognize AML biomarkers and to establish MS-based workflows that allow their unbiased identification and quantification. Although our literature review appears promising towards the utilization of MS-based proteomics in clinical AML in a near future, major efforts are required to validate AML biomarkers and agree on clinically approved workflows.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 141 条
[1]   The Progression of Acute Myeloid Leukemia from First Diagnosis to Chemoresistant Relapse: A Comparison of Proteomic and Phosphoproteomic Profiles [J].
Aasebo, Elise ;
Berven, Frode S. ;
Hovland, Randi ;
Doskeland, Stein Ove ;
Bruserud, Oystein ;
Selheim, Frode ;
Hernandez-Valladares, Maria .
CANCERS, 2020, 12 (06) :1-13
[2]   Proteome and Phosphoproteome Changes Associated with Prognosis in Acute Myeloid Leukemia [J].
Aasebo, Elise ;
Berven, Frode S. ;
Bartaula-Brevik, Sushma ;
Stokowy, Tomasz ;
Hovland, Randi ;
Vaudel, Marc ;
Doskeland, Stein Ove ;
McCormack, Emmet ;
Batth, Tanveer S. ;
Olsen, Jesper V. ;
Bruserud, Oystein ;
Selheim, Frode ;
Hernandez-Valladares, Maria .
CANCERS, 2020, 12 (03)
[3]   Proteomic Profiling of Primary Human Acute Myeloid Leukemia Cells Does Not Reflect Their Constitutive Release of Soluble Mediators [J].
Aasebo, Elise ;
Hernandez-Valladares, Maria ;
Selheim, Frode ;
Berven, Frode S. ;
Brenner, Annette K. ;
Bruserud, Oystein .
PROTEOMES, 2018, 7 (01)
[4]   Freezing effects on the acute myeloid leukemia cell proteome and phosphoproteome revealed using optimal quantitative workflows [J].
Aasebo, Elise ;
Mjaavatten, Olav ;
Vaudel, Marc ;
Farag, Yehia ;
Selheim, Frode ;
Berven, Frode ;
Bruserud, Oystein ;
Hernandez-Valladares, Maria .
JOURNAL OF PROTEOMICS, 2016, 145 :214-225
[5]   Global Cell Proteome Profiling, Phospho-signaling and Quantitative Proteomics for Identification of New Biomarkers in Acute Myeloid Leukemia Patients [J].
Aasebo, Elise ;
Forthun, Rakel B. ;
Berven, Frode ;
Selheim, Frode ;
Hernandez-Valladares, Maria .
CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2015, 17 (01) :52-70
[6]   Performance of super-SILAC based quantitative proteomics for comparison of different acute myeloid leukemia (AML) cell lines [J].
Aasebo, Elise ;
Vaudel, Marc ;
Mjaavatten, Olav ;
Gausdal, Gro ;
Van der Burgh, Arthur ;
Gjertsen, Bjorn Tore ;
Doskeland, Stein Ove ;
Bruserud, Oystein ;
Berven, Frode S. ;
Selheim, Frode .
PROTEOMICS, 2014, 14 (17-18) :1971-1976
[7]   Integrated nuclear proteomics and transcriptomics identifies S100A4 as a therapeutic target in acute myeloid leukemia [J].
Alanazi, Bader ;
Munje, Chinmay R. ;
Rastogi, Namrata ;
Williamson, Andrew J. K. ;
Taylor, Samuel ;
Hole, Paul S. ;
Hodges, Marie ;
Doyle, Michelle ;
Baker, Sarah ;
Gilkes, Amanda F. ;
Knapper, Steven ;
Pierce, Andrew ;
Whetton, Anthony D. ;
Darley, Richard L. ;
Tonks, Alex .
LEUKEMIA, 2020, 34 (02) :427-440
[8]   Comparative LC-MS: A landscape of peaks and valleys [J].
America, Antoine H. P. ;
Cordewener, Jan H. G. .
PROTEOMICS, 2008, 8 (04) :731-749
[9]   Sensitive Quantitative Proteomics of Human Hematopoietic Stem and Progenitor Cells by Data-independent Acquisition Mass Spectrometry [J].
Amon, Sabine ;
Meier-Abt, Fabienne ;
Gillet, Ludovic C. ;
Dimitrieva, Slavica ;
Theocharides, Alexandre P. A. ;
Manz, Markus G. ;
Aebersold, Ruedi .
MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (07) :1454-1467
[10]   The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia [J].
Arber, Daniel A. ;
Orazi, Attilio ;
Hasserjian, Robert ;
Thiele, Jurgen ;
Borowitz, Michael J. ;
Le Beau, Michelle M. ;
Bloomfield, Clara D. ;
Cazzola, Mario ;
Vardiman, James W. .
BLOOD, 2016, 127 (20) :2391-2405