Physiological, biochemical and molecular evaluation of mungbean genotypes for agronomical yield under drought and salinity stresses in the presence of humic acid

被引:15
|
作者
Alsamadany, Hameed [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Biol Sci, Jeddah, Saudi Arabia
关键词
Physiological; Biochemical; Gene expression; Antioxidant; Proline; Drought; Salinity; OXIDATIVE STRESS; PLANT; SUBSTANCES;
D O I
10.1016/j.sjbs.2022.103385
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Drought and salinity are potential threats in arid and semi arid regions. The current study was conducted with objective to optimize the production of different exotic genotypes of mungbean (NM-121-25, Chakwal M-6, DM-3 and PRI-Mung-2018) under drought and salinity stresses using humic acid in field experiments. One year tri-replicate field experiment was performed in RCBD using three factorial arrangement and effects of humic acid (60 kg ha-1) were evaluated at physiological, biochemical, molecular and agronomical level under individual and integrated applications of drought (no irrigation till 15 days) and salinity (EC 6.4 dSM-1). Data for physiological parameters (total chlorophyll, photosynthesis rate, stomatal conductance, transpiration rate and membrane damage), antioxidant enzymes (superoxide dismutase, catalase, peroxidase) and proline were collected on weekly basis since after the initiation of drought and salinity stresses. However data for agronomic characteristics (plant height, branches plant-1, LAI, pods plant-1, pod length and hundred seed weight) and grain carbohydrate content were collected after harvesting, while sampling for drought (VrDREB2A, VrbZIP17 and VrHsfA6a) and salinity (VrWRKY73, VrUBC1 and VrNHX1) related genes expression study was done after plants attained seedling stage. Under both individual and integrated applications of drought and salinity, all genotypes showed significant (p <= 0.05) increase in all traits excluding Cell membrane damage and proline during humic acid application. Likewise, genes expression revealed statistically distinct (p <= 0.05) up-regulation under humic acid treatment as compared to no humic acid treatment during both individual and integrated applications of drought and salinity. The genotype PRI-Mung-2018 recorded noteworthy performance during study. Moreover correlation and PCA analysis revealed that ultimate agronomical yield due to humic acid is an outcome of interconnection of physiological and biochemical parameters. CO 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:13
相关论文
共 21 条
  • [21] Evaluation of salicylic acid (SA) signaling pathways and molecular markers in Trichoderma-treated plants under salinity and Fusarium stresses. A Review
    Boamah, Solomon
    Ojangba, Theodora
    Zhang, Shuwu
    Zhu, Na
    Osei, Richard
    Tiika, Richard John
    Boakye, Thomas Afriyie
    Khurshid, Aroosa
    Inayat, Rehan
    Effah, Zechariah
    Essel, Eunice
    Xu, Bingliang
    EUROPEAN JOURNAL OF PLANT PATHOLOGY, 2023, 166 (03) : 259 - 274