Comparison of amoxicillin photodegradation in the UV/H2O2 and UV/persulfate systems: Reaction kinetics, degradation pathways, and antibacterial activity

被引:127
作者
Zhang, Yiqing [1 ,2 ]
Xiao, Yongjun [1 ]
Zhong, Yang [3 ]
Lim, Teik-Thye [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Civil & Environm Engn, 50 Nanyang Ave, Singapore 639789, Singapore
[2] Nanyang Technol Univ, NEWRI, 1 Cleantech Loop,CleanTech One, Singapore 637141, Singapore
[3] Nanyang Technol Univ, Sch Chem & Biol Engn, 50 Nanyang Ave, Singapore 639789, Singapore
关键词
UV; H2O2; Persulfate; Amoxicillin; Degradation; BETA-LACTAM ANTIBIOTICS; RATE CONSTANTS; PHOTOCHEMICAL DEGRADATION; HYDROXYL RADICALS; ENERGY EFFICIENCY; PULSE-RADIOLYSIS; FULVIC-ACID; OXIDATION; UV; WATER;
D O I
10.1016/j.cej.2019.04.160
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The extensive use of non-metabolized amoxicillin (AMX) has led to the contamination of the aquatic environment, which requires effective treatment methods. This study compares the reaction kinetics, degradation pathways, and antibacterial activity of AMX in the UV/H2O2 and UV/persulfate (S2O82-, PS) systems. UV irradiation alone shows a negligible effect on AMX degradation, while the addition of H2O2 or PS increases the degradation efficiency of AMX significantly due to the generation of HO center dot and SO4 center dot-. The second-order rate constants of AMX with HO center dot and SO4 center dot- are 3.9 x 10(9) M-1 s(-1) and 3.5 x 10(9) M-1 s(-1), respectively. In the UV/PS system at neutral pH, the contributions of UV, HO center dot, and SO4 center dot- for AMX degradation are 7.3%, 22.8%, and 69.9%, respectively. The degradation efficiency of AMX decreases with the presence of natural organic matter and inorganic anions in the water matrices. Based on the experimental evidence substantiated with theoretical calculations, the degradation pathways of AMX in the UV/H2O2 and UV/PS systems were proposed, including hydroxylation (+ 16 Da), hydrolysis (+ 18 Da), and decarboxylation (- 44 Da). The frontier electron density of AMX was calculated to predict the susceptible regions to HO center dot and SO4 center dot- attack. The antibacterial activity of AMX solution decreases significantly after applying UV/H2O2 or UV/PS processes. UV/H2O2 is more cost-effective than UV/PS process in degrading AMX.
引用
收藏
页码:420 / 428
页数:9
相关论文
共 50 条
  • [1] Kinetic and mechanistic investigation of azathioprine degradation in water by UV, UV/H2O2 and UV/persulfate
    Zhang, Yiqing
    Zhang, Jiefeng
    Xiao, Yongjun
    Chang, Victor W. C.
    Lim, Teik-Thye
    CHEMICAL ENGINEERING JOURNAL, 2016, 302 : 526 - 534
  • [2] Antibacterial Activity Inhibition after the Degradation of Flumequine by UV/H2O2
    da Silva, Caio Rodrigues
    Maniero, Milena Guedes
    Rath, Susanne
    Guimaraes, Jose Roberto
    JOURNAL OF ADVANCED OXIDATION TECHNOLOGIES, 2011, 14 (01) : 106 - 114
  • [3] Degradation of acetamiprid in UV/H2O2 and UV/persulfate systems: A comparative study
    Chen, Liwei
    Cai, Tianming
    Cheng, Chuan
    Xiong, Zhuang
    Ding, Dahu
    CHEMICAL ENGINEERING JOURNAL, 2018, 351 : 1137 - 1146
  • [4] Comparative study of naproxen degradation in water by UV/persulfate and UV/H2O2 processes
    Gao, Yu-qiong
    Gao, Nai-yun
    Yin, Da-qiang
    Chen, Ju-xiang
    DESALINATION AND WATER TREATMENT, 2017, 80 : 317 - 325
  • [5] Degradation difference of ofloxacin and levofloxacin by UV/H2O2 and UV/PS (persulfate): Efficiency, factors and mechanism
    Liu, Xiaohui
    Liu, Ying
    Lu, Shaoyong
    Wang, Zhi
    Wang, Yongqiang
    Zhang, Guodong
    Guo, Xiaochun
    Guo, Wei
    Zhang, Tingting
    Xi, Beidou
    CHEMICAL ENGINEERING JOURNAL, 2020, 385
  • [6] Comparison of aniline removal by UV/CaO2 and UV/H2O2: Degradation kinetics and mechanism
    Xue, Gang
    Zheng, Minghui
    Qian, Yajie
    Li, Qian
    Gao, Pin
    Liu, Zhenhong
    Chen, Hong
    Li, Xiang
    CHEMOSPHERE, 2020, 255 (255)
  • [7] Degradation and mineralization of Bisphenol A in wastewater by the UV/H2O2 and UV/persulfate processes
    Shu, Hung-Yee
    Chang, Ming-Chin
    Tsai, Meng-Ke
    DESALINATION AND WATER TREATMENT, 2017, 61 : 68 - 81
  • [8] Degradation of sulfadimethoxine in phosphate buffer solution by UV alone, UV/PMS and UV/H2O2: Kinetics, degradation products, and reaction pathways
    Shad, Asam
    Chen, Jing
    Qu, Ruijuan
    Dar, Afzal Ahmed
    Bin-Jumah, May
    Allam, Ahmed A.
    Wang, Zunyao
    CHEMICAL ENGINEERING JOURNAL, 2020, 398
  • [9] Kinetics and mechanisms of degradation of chloroacetonitriles by the UV/H2O2 process
    Ling, Li
    Sun, Jianliang
    Fang, Jingyun
    Shang, Chii
    WATER RESEARCH, 2016, 99 : 209 - 215
  • [10] Kinetics of tartrazine photodegradation by UV/H2O2 in aqueous solution
    Oancea, Petruta
    Meltzer, Viorica
    CHEMICAL PAPERS, 2014, 68 (01): : 105 - 111