Engineering Hollow Carbon Architecture for High-Performance K-Ion Battery Anode

被引:276
作者
Bin, De-Shan [1 ,2 ,3 ]
Lin, Xi-Jie [1 ,2 ,3 ]
Sun, Yong-Gang [1 ,2 ,3 ]
Xu, Yan-Song [1 ,2 ,3 ]
Zhang, Ke [3 ,4 ]
Cao, An-Min [1 ,2 ,3 ]
Wan, Li-Jun [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Chem, CAS Key Lab Mol Nanostruct & Nanotechnol, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Chem, CAS Res Educ Ctr Excellence Mol Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Inst Chem, State Key Lab Polymer Phys & Chem, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL ENERGY-STORAGE; NITROGEN-DOPED GRAPHENE; LITHIUM METAL ANODES; POTASSIUM; NANOSPHERES; ELECTRODES; FOAM; SUPERCAPACITORS; ADSORPTION; CHEMISTRY;
D O I
10.1021/jacs.8b02178
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
K-ion batteries (KIBs) are now drawing increasing research interest as an inexpensive alternative to Li-ion batteries (LIBs). However, due to the large size of K+, stable electrode materials capable of sustaining the repeated K+ intercalation/deintercalation cycles are extremely deficient especially if a satisfactory reversible capacity is expected. Herein, we demonstrated that the structural engineering of carbon into a hollow interconnected architecture, a shape similar to the neuron-cell network, promised high conceptual and technological potential for a high-performance KIB anode. Using melamine-formaldehyde resin as the starting material, we identify an interesting glass blowing effect of this polymeric precursor during its carbonization, which features a skeleton-softening process followed by its spontaneous hollowing. When used as a KIB anode, the carbon scaffold with interconnected hollow channels can ensure a resilient structure for a stable potassiation/depotassiation process and deliver an extraordinary capacity (340 mAh g(-1) at 0.1 C) together with a superior cycling stability (no obvious fading over 150 cycles at 0.5 C).
引用
收藏
页码:7127 / 7134
页数:8
相关论文
共 49 条
[1]  
Anderson I. H., 1969, BRIT POLYM J, V1, P24, DOI [10.1002/pi.4980010104, DOI 10.1002/PI.4980010104]
[2]  
Anderson I.H., 1971, Br. Polym. J, V3, P86, DOI DOI 10.1002/PI.4980030207
[3]  
Beyler C.L., 2002, SFPE HDB FIRE PROT E, P111
[4]   Controlling the Compositional Chemistry in Single Nanoparticles for Functional Hollow Carbon Nanospheres [J].
Bin, De-Shan ;
Chi, Zi-Xiang ;
Li, Yutao ;
Zhang, Ke ;
Yang, Xinzheng ;
Sun, Yong-Gang ;
Piao, Jun-Yu ;
Cao, An-Min ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (38) :13492-13498
[5]   Ideal Three-Dimensional Electrode Structures for Electrochemical Energy Storage [J].
Chabi, Sakineh ;
Peng, Chuang ;
Hu, Di ;
Zhu, Yanqiu .
ADVANCED MATERIALS, 2014, 26 (15) :2440-2445
[6]   Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption [J].
Chen, Shuiliang ;
He, Guanghua ;
Hu, Huan ;
Jin, Shaoqin ;
Zhou, Yan ;
He, Yunyun ;
He, Shuijian ;
Zhao, Feng ;
Hou, Haoqing .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) :2435-2439
[7]   Organic electrode for non-aqueous potassium-ion batteries [J].
Chen, Yanan ;
Luo, Wei ;
Carter, Marcus ;
Zhou, Lihui ;
Dai, Jiaqi ;
Fu, Kun ;
Lacey, Steven ;
Li, Tian ;
Wan, Jiayu ;
Han, Xiaogang ;
Bao, Yanping ;
Hu, Liangbing .
NANO ENERGY, 2015, 18 :205-211
[8]   Preparation of monodisperse, submicrometer carbon spheres by pyrolysis of melamine-formaldehyde resin [J].
Friedel, Bettina ;
Greulich-Weber, Siegmund .
SMALL, 2006, 2 (07) :859-863
[9]  
Gao CY, 2001, MACROMOL MATER ENG, V286, P355, DOI 10.1002/1439-2054(20010601)286:6<355::AID-MAME355>3.0.CO
[10]  
2-9