Bending angle prediction and control of soft pneumatic actuators with embedded flex sensors - A data-driven approach

被引:177
作者
Elgeneidy, Khaled [1 ]
Lohse, Niels [1 ]
Jackson, Michael [1 ]
机构
[1] Loughborough Univ, EPSRC Cesare Intelligent Automat, Epinal Way, Loughborough, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
Soft grippers; Soft pneumatic actuators; Artificial neural networks; Regression analysis; PID control; NEURAL-NETWORK;
D O I
10.1016/j.mechatronics.2017.10.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a purely data-driven modelling approach is presented for predicting and controlling the free bending angle response of a typical soft pneumatic actuator (SPA), embedded with a resistive flex sensor. An experimental setup was constructed to test the SPA at different input pressure values and orientations, while recording the resulting feedback from the embedded flex sensor and on-board pressure sensor. A calibrated high speed camera captures image frames during the actuation, which are then analysed using an image processing program to calculate the actual bending angle and synchronise it with the recorded sensory feedback. Empirical models were derived based on the generated experimental data using two common data-driven modelling techniques; regression analysis and artificial neural networks. Both techniques were validated using a new dataset at untrained operating conditions to evaluate their prediction accuracy. Furthermore, the derived empirical model was used as part of a closed-loop PID controller to estimate and control the bending angle of the tested SPA based on the real-time sensory feedback generated. The tuned MD controller allowed the bending SPA to accurately follow stepped and sinusoidal reference signals, even in the presence of pressure leaks in the pneumatic supply. This work demonstrates how purely data-driven models can be effectively used in controlling the bending of SPAs under different operating conditions, avoiding the need for complex analytical modelling and material characterisation. Ultimately, the aim is to create more controllable soft grippers based on such SPAs with embedded sensing capabilities, to be used in applications requiring both a 'soft touch' as well as a more controllable object manipulation.
引用
收藏
页码:234 / 247
页数:14
相关论文
共 32 条
[1]  
[Anonymous], P ASME 2016 INT ENG
[2]  
[Anonymous], SOFT ROBOT
[3]  
[Anonymous], 2001, INTRO LINEAR REGRESS, DOI [DOI 10.1198/TECH.2007.S499, 10.1198/tech.2007.s499]
[4]  
Bilodeau RA, 2015, IEEE INT C INT ROBOT, P2324, DOI 10.1109/IROS.2015.7353690
[5]   A neural network controller for continuum robots [J].
Braganza, David ;
Dawson, Darren M. ;
Walker, Ian D. ;
Nath, Nitendra .
IEEE TRANSACTIONS ON ROBOTICS, 2007, 23 (06) :1270-1277
[6]   Sensor enabled closed-loop bending control of soft beams [J].
Case, Jennifer C. ;
White, Edward L. ;
Kramer, Rebecca K. .
SMART MATERIALS AND STRUCTURES, 2016, 25 (04)
[7]   A novel type of compliant and underactuated robotic hand for dexterous grasping [J].
Deimel, Raphael ;
Brock, Oliver .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2016, 35 (1-3) :161-185
[8]  
Deimel R, 2013, IEEE INT CONF ROBOT, P2047, DOI 10.1109/ICRA.2013.6630851
[9]   Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature [J].
Dickey, Michael D. ;
Chiechi, Ryan C. ;
Larsen, Ryan J. ;
Weiss, Emily A. ;
Weitz, David A. ;
Whitesides, George M. .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (07) :1097-1104
[10]   Data-Driven Bending Angle Prediction of Soft Pneumatic Actuators with Embedded Flex Sensors [J].
Elgeneidy, Khaled ;
Lohse, Niels ;
Jackson, Michael .
IFAC PAPERSONLINE, 2016, 49 (21) :513-520