Quasi-neutral limit and the boundary layer problem of Planck-Nernst-Poisson-Navier-Stokes equations for electro-hydrodynamics

被引:14
作者
Wang, Shu [1 ]
Jiang, Limin [1 ]
Liu, Chundi [1 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Ping Le Yuan 100, Beijing 100124, Peoples R China
关键词
Quasineutral limit and Boundary layer; Incompressible Planck-Nernst-Poisson-Navier-Stokes equations; lambda-weighted entropy functional; DRIFT-DIFFUSION MODEL; SYSTEM; SEMICONDUCTORS;
D O I
10.1016/j.jde.2019.04.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quasi-neutral limit and the boundary layer problem of the two/three dimensional incompressible Planck-Nernst-Poisson-Navier-Stokes equations for electro hydrodynamics with the general mobilities of two kinds of charges and in the bounded domain is studied. For the generally smooth doping profile and the physical case that the mobilities of two kinds of charges is different, quasi-neutral limit with a subtle boundary layer structure is rigorously proved by constructing one new lambda-weighted entropy functional coupled with multi-scaling approximating expansion techniques. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:3475 / 3523
页数:49
相关论文
共 30 条
[1]  
[Anonymous], 1969, Mathematics and Its Applications
[2]   Convergence of the Vlasov-Poisson system to the incompressible Euler equations [J].
Brenier, Y .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (3-4) :737-754
[3]   Invariant Regions for the Nernst-Planck Equations [J].
Cimatti, Giovanni ;
Fragala, Ilaria .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1998, 175 (01) :93-118
[4]  
Constantin P., 2018, ARXIV180611400V1
[5]   Quasineutral limit of an Euler-Poisson system arising from plasma physics [J].
Cordier, S ;
Grenier, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (5-6) :1099-1113
[6]   On singular limits of mean-field equations [J].
Dolbeault, J ;
Markowich, PA ;
Unterreiter, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 158 (04) :319-351
[7]   The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model [J].
Gasser, I ;
Levermore, CD ;
Markowich, PA ;
Schmeiser, C .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2001, 12 :497-512
[8]   Quasi-neutral limit of a nonlinear drift diffusion model for semiconductors [J].
Gasser, I ;
Hsiao, L ;
Markowich, PA ;
Wang, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (01) :184-199
[9]   The asymptotic behavior of globally smooth solutions of the multidimensional isentropic hydrodynamic model for semiconductors [J].
Hsiao, L ;
Markowich, PA ;
Wang, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 192 (01) :111-133
[10]   Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system [J].
Hsiao, Ling ;
Li, Fucai ;
Wang, Shu .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (03) :579-589