STABILITY ANALYSIS OF A RENEWAL EQUATION FOR CELL POPULATION DYNAMICS WITH QUIESCENCE

被引:8
作者
Alarcon, Tomas [1 ,2 ]
Getto, Philipp [3 ,4 ]
Nakata, Yukihiko [5 ]
机构
[1] Ctr Recerca Matemat, Barcelona 08193, Spain
[2] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Spain
[3] Tech Univ Dresden, Inst Anal, Fachrichtung Math, D-01062 Dresden, Germany
[4] BCAM, Bilbao 48009, Spain
[5] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
基金
欧洲研究理事会;
关键词
quiescence; cell population model; age structure; renewal equation; Hopf bifurcation; characteristic equation; STEM-CELLS; FUNCTIONAL-EQUATIONS; HOPF-BIFURCATION; MODEL; OSCILLATIONS; CANCER; ORGANIZATION; DRUG;
D O I
10.1137/130940438
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a model to analyze the dynamics of interacting proliferating and quiescent cell populations. The model includes age dependence of cell division, transitions between the two subpopulations, and regulation of the recruitment of quiescent cells. We formulate the model as a pair of renewal equations and apply a rather recent general result to prove that (in) stability of equilibria can be analyzed by locating roots of characteristic equations. We are led to a parameter plane analysis of a characteristic equation, which has not been analyzed in this way so far. We conclude with how quiescence of cells as well as two submodels for cell division may influence the possibility of destabilization via oscillations.
引用
收藏
页码:1266 / 1297
页数:32
相关论文
共 41 条
[1]   STABILITY AND HOPF BIFURCATION FOR A CELL POPULATION MODEL WITH STATE-DEPENDENT DELAY [J].
Adimy, Mostafa ;
Crauste, Fabien ;
Lhassan Hbid, My ;
Qesmi, Redouane .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (05) :1611-1633
[2]   A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells [J].
Alarcón, T ;
Byrne, HM ;
Maini, PK .
JOURNAL OF THEORETICAL BIOLOGY, 2004, 229 (03) :395-411
[3]   Quiescence: a mechanism for escaping the effects of drug on cell populations [J].
Alarcon, Tomas ;
Jensen, Henrik Jeldtoft .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2011, 8 (54) :99-106
[4]   Notch signaling: Cell fate control and signal integration in development [J].
Artavanis-Tsakonas, S ;
Rand, MD ;
Lake, RJ .
SCIENCE, 1999, 284 (5415) :770-776
[5]   Oscillations in cyclical neutropenia:: new evidence based on mathematical modeling [J].
Bernard, S ;
Bélair, J ;
Mackey, MC .
JOURNAL OF THEORETICAL BIOLOGY, 2003, 223 (03) :283-298
[6]  
Borges R., 2012, THESIS U AUTNOMA BAR
[7]   Oscillations in a molecular structured cell population model [J].
Borges, Ricardo ;
Calsina, Angel ;
Cuadrado, Silvia .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) :1911-1922
[8]   An age-and-cyclin-structured cell population model for healthy and tumoral tissues [J].
Brikci, Fadia Bekkal ;
Clairambault, Jean ;
Ribba, Benjamin ;
Perthame, Benoit .
JOURNAL OF MATHEMATICAL BIOLOGY, 2008, 57 (01) :91-110
[9]   Stem cells, quiescence and rectal carcinoma: an unexplored relationship and potential therapeutic target [J].
Buczacki, S. ;
Davies, R. J. ;
Winton, D. J. .
BRITISH JOURNAL OF CANCER, 2011, 105 (09) :1253-1259
[10]  
Cheng S.S., 2009, DUAL SETS ENVELOPES