Quantitative genomics of aggressive behavior in Drosophila melanogaster

被引:148
|
作者
Edwards, Alexis C.
Rollmann, Stephanie M.
Morgan, Theodore J.
Mackay, Trudy F. C. [1 ]
机构
[1] N Carolina State Univ, Dept Genet, Raleigh, NC 27695 USA
[2] N Carolina State Univ, WM Keck Ctr Behav Biol, Raleigh, NC 27695 USA
关键词
D O I
10.1371/journal.pgen.0020154
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Aggressive behavior is important for animal survival and reproduction, and excessive aggression is an enormous social and economic burden for human society. Although the role of biogenic amines in modulating aggressive behavior is well characterized, other genetic mechanisms affecting this complex behavior remain elusive. Here, we developed an assay to rapidly quantify aggressive behavior in Drosophila melanogaster, and generated replicate selection lines with divergent levels of aggression. The realized heritability of aggressive behavior was approximately 0.10, and the phenotypic response to selection specifically affected aggression. We used whole-genome expression analysis to identify 1,539 probe sets with different expression levels between the selection lines when pooled across replicates, at a false discovery rate of 0.001. We quantified the aggressive behavior of 19 mutations in candidate genes that were generated in a common co-isogenic background, and identified 15 novel genes affecting aggressive behavior. Expression profiling of genetically divergent lines is an effective strategy for identifying genes affecting complex traits.
引用
收藏
页码:1386 / 1395
页数:10
相关论文
共 50 条
  • [11] The quantitative genetic basis of male mating behavior in Drosophila melanogaster
    Moehring, AJ
    Mackay, TFC
    GENETICS, 2004, 167 (03) : 1249 - 1263
  • [12] Evolutionary Genomics of Genes Involved in Olfactory Behavior in the Drosophila melanogaster Species Group
    Lavagnino, Nicolas
    Serra, Francois
    Arbiza, Leonardo
    Dopazo, Hernan
    Hasson, Esteban
    EVOLUTIONARY BIOINFORMATICS, 2012, 8 : 89 - 104
  • [13] Quantitative evolutionary genomics:: differential gene expression and male reproductive success in Drosophila melanogaster
    Drnevich, JM
    Reedy, MM
    Ruedi, EA
    Rodriguez-Zas, S
    Hughes, KA
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2004, 271 (1554) : 2267 - 2273
  • [14] Population Genomics of the Wolbachia Endosymbiont in Drosophila melanogaster
    Richardson, Mark F.
    Weinert, Lucy A.
    Welch, John J.
    Linheiro, Raquel S.
    Magwire, Michael M.
    Jiggins, Francis M.
    Bergman, Casey M.
    PLOS GENETICS, 2012, 8 (12):
  • [15] Population Genomics of Inversion Polymorphisms in Drosophila melanogaster
    Corbett-Detig, Russell B.
    Hartl, Daniel L.
    PLOS GENETICS, 2012, 8 (12):
  • [16] Resources for Functional Genomics Studies in Drosophila melanogaster
    Mohr, Stephanie E.
    Hu, Yanhui
    Kim, Kevin
    Housden, Benjamin E.
    Perrimon, Norbert
    GENETICS, 2014, 197 (01) : 1 - 18
  • [17] Comparative genomics of Anopheles gambiae and Drosophila melanogaster
    Jabbari, K
    Bernardi, G
    GENE, 2004, 333 : 183 - 186
  • [18] Population Genomics of Transposable Elements in Drosophila melanogaster
    Petrov, Dmitri A.
    Fiston-Lavier, Anna-Sophie
    Lipatov, Mikhail
    Lenkov, Kapa
    Gonzalez, Josefa
    MOLECULAR BIOLOGY AND EVOLUTION, 2011, 28 (05) : 1633 - 1644
  • [19] Quantitative imaging of sleep behavior in Caenorhabditis elegans and larval Drosophila melanogaster
    Churgin, Matthew A.
    Szuperak, Milan
    Davis, Kristen C.
    Raizen, David M.
    Fang-Yen, Christopher
    Kayser, Matthew S.
    NATURE PROTOCOLS, 2019, 14 (05) : 1455 - 1488
  • [20] QUANTITATIVE-ANALYSIS OF THE FEEDING-BEHAVIOR OF DROSOPHILA-MELANOGASTER
    SHIMADA, I
    NAKAO, M
    KAWAZOE, Y
    CHEMICAL SENSES, 1987, 12 (03) : 515 - 515