Generalized Weierstrass semigroups and their Poincare series

被引:2
|
作者
Moyano-Fernandez, J. J. [1 ]
Tenorio, W. [2 ]
Torres, F. [3 ]
机构
[1] Univ Jaume 1, Inst Univ Matemat & Aplicac Castello, Campus Riu Sec, Castellon De La Plana 12071, Spain
[2] Univ Fed Uberlandia, Fac Matemat, Av JN Avila 2121, BR-38408902 Uberlandia, MG, Brazil
[3] Univ Estadual Campinas, UNICAMP, Inst Math Stat & Comp Sci IMECC, R Sergio Buarque de Holanda 651, BR-13083059 Campinas, SP, Brazil
关键词
Generalized Weicrstrass semigroups; Riemann-Roch spaces; Poincare; GOPPA CODES; POINTS; GAPS; PAIR;
D O I
10.1016/j.ffa.2019.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the structure of the generalized Weierstrass semigroups at several points on a curve defined over a finite field. We present a description of these semigroups that enables us to associate them with combinatorial objects, the Poincare series and the semigroup polynomial. We show that this Poincare series determines completely the generalized Weierstrass semigroup and it is entirely determined by the semigroup polynomial. We finish the paper by describing the functional equations occurring to the Poincare series under the hypothesis of a symmetric generalized Weierstrass semigroup. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:46 / 69
页数:24
相关论文
共 36 条
  • [1] Generalized Weierstrass semigroups and Riemann-Roch spaces for certain curves with separated variables
    Tenorio, Wanderson
    Tizziotti, Guilherme
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 57 : 230 - 248
  • [2] Weierstrass semigroups from Kummer extensions
    Yang, Shudi
    Hu, Chuangqiang
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 45 : 264 - 284
  • [3] On Weierstrass semigroups and sets: a review with new results
    Carvalho, Cicero
    Kato, Takao
    GEOMETRIAE DEDICATA, 2009, 139 (01) : 195 - 210
  • [4] Weierstrass semigroups, pure gaps and codes on function fields
    Castellanos, Alonso S.
    Mendoza, Erik A. R.
    Quoos, Luciane
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (05) : 1219 - 1242
  • [5] On Weierstrass Semigroups of Some Triples on Norm-Trace Curves
    Matthews, Gretchen L.
    CODING AND CRYPTOLOGY, PROCEEDINGS, 2009, 5557 : 146 - 156
  • [6] On -Hyperelliptic Weierstrass Semigroups of Genus and
    Komeda, Jiryo
    Ohbuch, Akira
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (02): : 209 - 218
  • [7] Weierstrass as a reader of Poincare's early works
    Bottazzini, Umberto
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2014, 47 : 118 - 123
  • [8] WEIERSTRASS SEMIGROUPS ON THE THIRD FUNCTION FIELD IN A TOWER ATTAINING THE DRINFELD-VLADUT BOUND
    Yang, Shudi
    Hu, Chuangqiang
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (04) : 1051 - 1083
  • [9] Generalized Weierstrass semigroups at several points on certain maximal curves which cannot be covered by the Hermitian curve
    Montanucci, M.
    Tizziotti, G.
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (03) : 831 - 851
  • [10] On Weierstrass semigroups of double coverings of hyperelliptic curves
    Oliveira, Gilvan
    Pimentel, Francisco L. R.
    SEMIGROUP FORUM, 2015, 90 (03) : 721 - 730