Mitochondrial Dysfunction and Diabetes: Is Mitochondrial Transfer a Friend or Foe?

被引:38
作者
Montgomery, Magdalene K. [1 ]
机构
[1] Univ Melbourne, Sch Biomed Sci, Dept Physiol, Melbourne, Vic 3010, Australia
来源
BIOLOGY-BASEL | 2019年 / 8卷 / 02期
基金
英国医学研究理事会;
关键词
mitochondrial dysfunction; insulin resistance; type; 2; diabetes; mitochondrial transfer; exosomes; FATTY-ACID OXIDATION; HUMAN SKELETAL-MUSCLE; MARROW STROMAL CELLS; INSULIN-RESISTANCE; EXTRACELLULAR VESICLES; HEART-FAILURE; COMPLEX I; SUBSARCOLEMMAL MITOCHONDRIA; MYOCARDIAL-INFARCTION; SUBSTRATE METABOLISM;
D O I
10.3390/biology8020033
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Obesity, insulin resistance and type 2 diabetes are accompanied by a variety of systemic and tissue-specific metabolic defects, including inflammation, oxidative and endoplasmic reticulum stress, lipotoxicity, and mitochondrial dysfunction. Over the past 30 years, association studies and genetic manipulations, as well as lifestyle and pharmacological invention studies, have reported contrasting findings on the presence or physiological importance of mitochondrial dysfunction in the context of obesity and insulin resistance. It is still unclear if targeting mitochondrial function is a feasible therapeutic approach for the treatment of insulin resistance and glucose homeostasis. Interestingly, recent studies suggest that intact mitochondria, mitochondrial DNA, or other mitochondrial factors (proteins, lipids, miRNA) are found in the circulation, and that metabolic tissues secrete exosomes containing mitochondrial cargo. While this phenomenon has been investigated primarily in the context of cancer and a variety of inflammatory states, little is known about the importance of exosomal mitochondrial transfer in obesity and diabetes. We will discuss recent evidence suggesting that (1) tissues with mitochondrial dysfunction shed their mitochondria within exosomes, and that these exosomes impair the recipient's cell metabolic status, and that on the other hand, (2) physiologically healthy tissues can shed mitochondria to improve the metabolic status of recipient cells. In this context the determination of whether mitochondrial transfer in obesity and diabetes is a friend or foe requires further studies.
引用
收藏
页数:17
相关论文
共 156 条
[51]   Activating HSP72 in Rodent Skeletal Muscle Increases Mitochondrial Number and Oxidative Capacity and Decreases Insulin Resistance [J].
Henstridge, Darren C. ;
Bruce, Clinton R. ;
Drew, Brian G. ;
Tory, Kalman ;
Kolonics, Attila ;
Estevez, Emma ;
Chung, Jason ;
Watson, Nadine ;
Gardner, Timothy ;
Lee-Young, Robert S. ;
Connor, Timothy ;
Watt, Matthew J. ;
Carpenter, Kevin ;
Hargreaves, Mark ;
McGee, Sean L. ;
Hevener, Andrea L. ;
Febbraio, Mark A. .
DIABETES, 2014, 63 (06) :1881-1894
[52]   Current knowledge on exosome biogenesis and release [J].
Hessvik, Nina Pettersen ;
Llorente, Alicia .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2018, 75 (02) :193-208
[53]   Type II diabetes increases mitochondrial DNA mutations in the left ventricle of the Goto-Kakizaki diabetic rat [J].
Hicks, S. ;
Labinskyy, N. ;
Piteo, B. ;
Laurent, D. ;
Mathew, J. E. ;
Gupte, S. A. ;
Edwards, J. G. .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2013, 304 (07) :H903-H915
[54]   Lipid-Induced Signaling Causes Release of Inflammatory Extracellular Vesicles From Hepatocytes [J].
Hirsova, Petra ;
Ibrahim, Samar H. ;
Krishnan, Anuradha ;
Verma, Vikas K. ;
Bronk, Steven F. ;
Werneburg, Nathan W. ;
Charlton, Michael R. ;
Shah, Vijay H. ;
Malhi, Harmeet ;
Gores, Gregory J. .
GASTROENTEROLOGY, 2016, 150 (04) :956-967
[55]   Regulation of Mitochondrial Biogenesis and GLUT4 Expression by Exercise [J].
Holloszy, John O. .
COMPREHENSIVE PHYSIOLOGY, 2011, 1 (02) :921-940
[56]   Increasing skeletal muscle fatty acid transport protein 1 (FATP1) targets fatty acids to oxidation and does not predispose mice to diet-induced insulin resistance [J].
Holloway, G. P. ;
Chou, C. J. ;
Lally, J. ;
Stellingwerff, T. ;
Maher, A. C. ;
Gavrilova, O. ;
Haluzik, M. ;
Alkhateeb, H. ;
Reitman, M. L. ;
Bonen, A. .
DIABETOLOGIA, 2011, 54 (06) :1457-1467
[57]   Circulating Adipocyte-Derived Exosomal MicroRNAs Associated with Decreased Insulin Resistance After Gastric Bypass [J].
Hubal, Monica J. ;
Nadler, Evan P. ;
Ferrante, Sarah C. ;
Barberio, Matthew D. ;
Suh, Jung-Hyuk ;
Wang, Justin ;
Dohm, G. Lynis ;
Pories, Walter J. ;
Mietus-Snyder, Michelle ;
Freishtat, Robert J. .
OBESITY, 2017, 25 (01) :102-110
[58]   Proteomics Analysis of Human Skeletal Muscle Reveals Novel Abnormalities in Obesity and Type 2 Diabetes [J].
Hwang, Hyonson ;
Bowen, Benjamin P. ;
Lefort, Natalie ;
Flynn, Charles R. ;
De Filippis, Elena A. ;
Roberts, Christine ;
Smoke, Christopher C. ;
Meyer, Christian ;
Hojlund, Kurt ;
Yi, Zhengping ;
Mandarino, Lawrence J. .
DIABETES, 2010, 59 (01) :33-42
[59]   Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury [J].
Islam, Mohammad Naimul ;
Das, Shonit R. ;
Emin, Memet T. ;
Wei, Michelle ;
Sun, Li ;
Westphalen, Kristin ;
Rowlands, David J. ;
Quadri, Sadiqa K. ;
Bhattacharya, Sunita ;
Bhattacharya, Jahar .
NATURE MEDICINE, 2012, 18 (05) :759-U153
[60]   Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS [J].
Jackson, Megan V. ;
Morrison, Thomas J. ;
Doherty, Declan F. ;
Mcauley, Daniel F. ;
Matthay, Michael A. ;
Kissenpfennig, Adrien ;
O'Kane, Cecilia M. ;
Krasnodembskaya, Anna D. .
STEM CELLS, 2016, 34 (08) :2210-2223