Data-driven determination of number of discrete conformations in single-particle cryo-EM

被引:6
|
作者
Zhou, Ye [1 ]
Moscovich, Amit [2 ]
Bartesaghi, Alberto [1 ,3 ,4 ]
机构
[1] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
[2] Tel Aviv Univ, Dept Stat & Operat Res, Tel Aviv, Israel
[3] Duke Univ Sch Med, Dept Biochem, Durham, NC 27708 USA
[4] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
关键词
CRYOELECTRON MICROSCOPY; MACROMOLECULES; RECONSTRUCTION; HETEROGENEITY; VARIABILITY; ACQUISITION; TOMOGRAPHY; MECHANISM;
D O I
10.1016/j.cmpb.2022.106892
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and objective: One of the strengths of single-particle cryo-EM compared to other structural determination techniques is its ability to image heterogeneous samples containing multiple molecular species, different oligomeric states or distinct conformations. This is achieved using routines for in-silico 3D classification that are now well established in the field and have successfully been used to characterize the structural heterogeneity of important biomolecules. These techniques, however, rely on expert user knowledge and trial-and-error experimentation to determine the correct number of conformations, making it a labor intensive, subjective, and difficult to reproduce procedure. Methods: We propose an approach to address the problem of automatically determining the number of discrete conformations present in heterogeneous single-particle cryo-EM datasets. We do this by systematically evaluating all possible partitions of the data and selecting the result that maximizes the average variance of similarities measured between particle images and the corresponding 3D reconstructions. Results: Using this strategy, we successfully analyzed datasets of heterogeneous protein complexes, including: 1) in-silico mixtures obtained by combining closely related antibody-bound HIV-1 Env trimers and other important membrane channels, and 2) naturally occurring mixtures from diverse and dynamic protein complexes representing varying degrees of structural heterogeneity and conformational plasticity. Conclusions: The availability of unsupervised strategies for 3D classification combined with existing approaches for fully automatic pre-processing and 3D refinement, represents an important step towards converting single-particle cryo-EM into a high-throughput technique. (C) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Towards automating single-particle cryo-EM data acquisition
    Dienemann, Christian
    IUCRJ, 2023, 10 : 4 - 5
  • [2] Single-particle cryo-EM analysis of the purinosome
    Calise, S. J.
    Molfino, J.
    Dickinson, M. S.
    Quispe, J.
    Kollman, J. M.
    MOLECULAR BIOLOGY OF THE CELL, 2023, 34 (02) : 675 - 676
  • [3] A potential difference for single-particle cryo-EM
    Rosenthal, Peter B.
    IUCRJ, 2019, 6 : 988 - 989
  • [4] Single-particle cryo-EM: beyond the resolution
    Jean-Paul Armache
    Yifan Cheng
    National Science Review, 2019, 6 (05) : 864 - 866
  • [5] Single-particle cryo-EM at atomic resolution
    Nakane, Takanori
    Kotecha, Abhay
    Sente, Andrija
    McMullan, Greg
    Masiulis, Simonas
    Brown, Patricia M. G. E.
    Grigoras, Ioana T.
    Malinauskaite, Lina
    Malinauskas, Tomas
    Miehling, Jonas
    Uchanski, Tomasz
    Yu, Lingbo
    Karia, Dimple
    Pechnikova, Evgeniya V.
    de Jong, Erwin
    Keizer, Jeroen
    Bischoff, Maarten
    McCormack, Jamie
    Tiemeijer, Peter
    Hardwick, Steven W.
    Chirgadze, Dimitri Y.
    Murshudov, Garib
    Aricescu, A. Radu
    Scheres, Sjors H. W.
    NATURE, 2020, 587 (7832) : 152 - +
  • [6] Single-particle cryo-EM at atomic resolution
    Sente, A.
    Nakane, T.
    Kotecha, A.
    Aricescu, A. R.
    Scheres, S. H. W.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2020, 76 : A220 - A220
  • [7] Single-Particle Cryo-EM at Crystallographic Resolution
    Cheng, Yifan
    CELL, 2015, 161 (03) : 450 - 457
  • [8] Single-particle cryo-EM at atomic resolution
    Takanori Nakane
    Abhay Kotecha
    Andrija Sente
    Greg McMullan
    Simonas Masiulis
    Patricia M. G. E. Brown
    Ioana T. Grigoras
    Lina Malinauskaite
    Tomas Malinauskas
    Jonas Miehling
    Tomasz Uchański
    Lingbo Yu
    Dimple Karia
    Evgeniya V. Pechnikova
    Erwin de Jong
    Jeroen Keizer
    Maarten Bischoff
    Jamie McCormack
    Peter Tiemeijer
    Steven W. Hardwick
    Dimitri Y. Chirgadze
    Garib Murshudov
    A. Radu Aricescu
    Sjors H. W. Scheres
    Nature, 2020, 587 : 152 - 156
  • [9] Single-particle cryo-EM: beyond the resolution
    Armache, Jean-Paul
    Cheng, Yifan
    NATIONAL SCIENCE REVIEW, 2019, 6 (05) : 864 - 866
  • [10] Cryo-EM and Single-Particle Analysis with Scipion
    Jimenez-Moreno, A.
    del Cano, L.
    Martinez, M.
    Ramirez-Aportela, E.
    Cuervo, A.
    Melero, R.
    Sanchez-Garcia, R.
    Strelak, D.
    Fernandez-Gimenez, E.
    de Isidro-Gomez, F. P.
    Herreros, D.
    Conesa, P.
    Fonseca, Y.
    Maluenda, D.
    Jimenez de la Morena, J.
    Macias, J. R.
    Losana, P.
    Marabini, R.
    Carazo, J. M.
    Sorzano, C. O. S.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2021, (171):