Data-driven determination of number of discrete conformations in single-particle cryo-EM

被引:6
作者
Zhou, Ye [1 ]
Moscovich, Amit [2 ]
Bartesaghi, Alberto [1 ,3 ,4 ]
机构
[1] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
[2] Tel Aviv Univ, Dept Stat & Operat Res, Tel Aviv, Israel
[3] Duke Univ Sch Med, Dept Biochem, Durham, NC 27708 USA
[4] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
关键词
CRYOELECTRON MICROSCOPY; MACROMOLECULES; RECONSTRUCTION; HETEROGENEITY; VARIABILITY; ACQUISITION; TOMOGRAPHY; MECHANISM;
D O I
10.1016/j.cmpb.2022.106892
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and objective: One of the strengths of single-particle cryo-EM compared to other structural determination techniques is its ability to image heterogeneous samples containing multiple molecular species, different oligomeric states or distinct conformations. This is achieved using routines for in-silico 3D classification that are now well established in the field and have successfully been used to characterize the structural heterogeneity of important biomolecules. These techniques, however, rely on expert user knowledge and trial-and-error experimentation to determine the correct number of conformations, making it a labor intensive, subjective, and difficult to reproduce procedure. Methods: We propose an approach to address the problem of automatically determining the number of discrete conformations present in heterogeneous single-particle cryo-EM datasets. We do this by systematically evaluating all possible partitions of the data and selecting the result that maximizes the average variance of similarities measured between particle images and the corresponding 3D reconstructions. Results: Using this strategy, we successfully analyzed datasets of heterogeneous protein complexes, including: 1) in-silico mixtures obtained by combining closely related antibody-bound HIV-1 Env trimers and other important membrane channels, and 2) naturally occurring mixtures from diverse and dynamic protein complexes representing varying degrees of structural heterogeneity and conformational plasticity. Conclusions: The availability of unsupervised strategies for 3D classification combined with existing approaches for fully automatic pre-processing and 3D refinement, represents an important step towards converting single-particle cryo-EM into a high-throughput technique. (C) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:7
相关论文
共 49 条
[1]   Single-particle cryo-EM using alignment by classification (ABC): the structure of Lumbricus terrestris haemoglobin [J].
Afanasyev, Pavel ;
Seer-Linnemayr, Charlotte ;
Ravelli, Raimond B. G. ;
Matadeen, Rishi ;
De Carlo, Sacha ;
Alewijnse, Bart ;
Portugal, Rodrigo V. ;
Pannu, Navraj S. ;
Schatz, Michael ;
van Heel, Marin .
IUCRJ, 2017, 4 :678-694
[2]   A max-cut approach to heterogeneity in cryo-electron microscopy [J].
Aizenbud, Yariv ;
Shkolnisky, Yoel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) :1004-1029
[3]   2.3 Å resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition [J].
Banerjee, Soojay ;
Bartesaghi, Alberto ;
Merk, Alan ;
Rao, Prashant ;
Bulfer, Stacie L. ;
Yan, Yongzhao ;
Green, Neal ;
Mroczkowski, Barbara ;
Neitz, R. Jeffrey ;
Wipf, Peter ;
Falconieri, Veronica ;
Deshaies, Raymond J. ;
Milne, Jacqueline L. S. ;
Huryn, Donna ;
Arkin, Michelle ;
Subramaniam, Sriram .
SCIENCE, 2016, 351 (6275) :871-875
[4]   Structure of β-galactosidase at 3.2-Å resolution obtained by cryo-electron microscopy [J].
Bartesaghi, Alberto ;
Matthies, Doreen ;
Banerjee, Soojay ;
Merk, Alan ;
Subramaniam, Sriram .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (32) :11709-11714
[5]   Prefusion structure of trimeric HIV-1 envelope glycoprotein determined by cryo-electron microscopy [J].
Bartesaghi, Alberto ;
Merk, Alan ;
Borgnia, Mario J. ;
Milne, Jacqueline L. S. ;
Subramaniam, Sriram .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2013, 20 (12) :1352-1357
[6]   Beam image-shift accelerated data acquisition for near-atomic resolution single-particle cryo-electron tomography [J].
Bouvette, Jonathan ;
Liu, Hsuan-Fu ;
Du, Xiaochen ;
Zhou, Ye ;
Sikkema, Andrew P. ;
da Fonseca Rezende e Mello, Juliana ;
Klemm, Bradley P. ;
Huang, Rick ;
Schaaper, Roel M. ;
Borgnia, Mario J. ;
Bartesaghi, Alberto .
NATURE COMMUNICATIONS, 2021, 12 (01)
[7]   TRPV1 structures in distinct conformations reveal activation mechanisms [J].
Cao, Erhu ;
Liao, Maofu ;
Cheng, Yifan ;
Julius, David .
NATURE, 2013, 504 (7478) :113-+
[8]   Deep learning-based mixed-dimensional Gaussian mixture model for characterizing variability in cryo-EM [J].
Chen, Muyuan ;
Ludtke, Steven J. .
NATURE METHODS, 2021, 18 (08) :930-+
[9]   High resolution single particle cryo-electron microscopy using beam-image shift [J].
Cheng, Anchi ;
Eng, Edward T. ;
Alink, Lambertus ;
Rice, William J. ;
Jordan, Kelsey D. ;
Kim, Laura Y. ;
Potter, Clinton S. ;
Carragher, Bridget .
JOURNAL OF STRUCTURAL BIOLOGY, 2018, 204 (02) :270-275
[10]   Structural insight into TRPV5 channel function and modulation [J].
Dang, Shangyu ;
van Goor, Mark K. ;
Asarnow, Daniel ;
Wang, YongQiang ;
Julius, David ;
Cheng, Yifan ;
van der Wijst, Jenny .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (18) :8869-8878