An analysis of Lavrentiev regularization method and Newton type process for nonlinear ill-posed problems

被引:18
作者
Vasin, Vladmir [1 ,2 ]
George, Santhosh [3 ]
机构
[1] Ural Fed Univ, Ekaterinburg 620000, Russia
[2] Inst Math & Mech UB RAS, Ekaterinburg 620990, Russia
[3] Natl Inst Technol Karnataka, Dept Math & Computat Sci, Mangalore 575025, India
关键词
Ill-posed problem; Lavrentiev regularization method; Newton method; Center-type Lipschitz condition; Inverse gravimetry problem; CONVERGENCE ANALYSIS; ITERATIVE METHODS;
D O I
10.1016/j.amc.2013.12.104
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the Lavrentiev regularization method and a modified Newton method for obtaining stable approximate solution to nonlinear ill-posed operator equations F(x) = y where F : D(F) subset of X -> X is a nonlinear monotone operator or F'(x(0)) is nonnegative selfadjoint operator defined on a real Hilbert space X. We assume that only a noisy data y delta is an element of X with parallel to y - y(delta)parallel to <= delta d are available. Further we assume that Frechet derivative F' of F satisfies center-type Lipschitz condition. A priori choice of regularization parameter is presented. We proved that under a general source condition on x(0) - (x) over cap; the error parallel to(x) over cap - x(n,alpha)(delta)parallel to between the regularized approximation x(n,alpha)(delta)( x(n,alpha)(delta) := x(0)) and the solution (x) over cap is of optimal order. In the concluding section the algorithm is applied to numerical solution of the inverse gravimetry problem. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:406 / 413
页数:8
相关论文
共 17 条
[1]  
[Anonymous], USSR COMPUT MATH MAT
[2]  
[Anonymous], 2008, CONVERGENCE APPL NEW, DOI DOI 10.1007/978-0-387-72743-1
[3]   On application of generalized discrepancy principle to iterative methods for nonlinear ill-posed problems [J].
Bakushinsky, A ;
Smirnova, A .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2005, 26 (01) :35-48
[4]  
Bakushinsky A., 1994, ILL POSED PROBLEMS T
[5]   On convergence rates for the iteratively regularized Gauss-Newton method [J].
Blaschke, B ;
Neubauer, A ;
Scherzer, O .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1997, 17 (03) :421-436
[6]   A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions [J].
Deuflhard, P ;
Engl, HW ;
Scherzer, O .
INVERSE PROBLEMS, 1998, 14 (05) :1081-1106
[7]   A CONVERGENCE ANALYSIS OF THE LANDWEBER ITERATION FOR NONLINEAR ILL-POSED PROBLEMS [J].
HANKE, M ;
NEUBAUER, A ;
SCHERZER, O .
NUMERISCHE MATHEMATIK, 1995, 72 (01) :21-37
[8]  
Jin QN, 2000, MATH COMPUT, V69, P1603, DOI 10.1090/S0025-5718-00-01199-6
[9]   Error estimates of some Newton-type methods for solving nonlinear inverse problems in Hilbert scales [J].
Jin, QN .
INVERSE PROBLEMS, 2000, 16 (01) :187-197
[10]  
Mahale P., 2009, ANZIAM J, V51, P191, DOI [10.1017/S1446181109000418, DOI 10.1017/S1446181109000418]