Matrix product simulations of non-equilibrium steady states of quantum spin chains

被引:219
作者
Prosen, Tomaz [1 ]
Znidaric, Marko [1 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Dept Phys, SI-1000 Ljubljana, Slovenia
关键词
quantum chaos; entanglement in extended quantum systems (theory); quantum transport in one dimension; quantum transport; THERMAL-CONDUCTIVITY; FOURIERS LAW; TRANSPORT; ENTANGLEMENT;
D O I
10.1088/1742-5468/2009/02/P02035
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A time-dependent density matrix renormalization group method with a matrix product ansatz is employed for explicit computation of non-equilibrium steady state density operators of several integrable and non-integrable quantum spin chains, which are driven far from equilibrium by means of Markovian couplings to external baths at the two ends. It is argued that even though the time evolution cannot be simulated efficiently due to fast entanglement growth, the steady states in and out of equilibrium can be typically accurately approximated, with the result that chains of length of the order of n approximate to 100 spins are accessible. Our results are demonstrated by performing explicit simulations of steady states and calculations of energy/spin densities/currents in several problems of heat and spin transport in quantum spin chains. A previously conjectured relation between quantum chaos and normal transport is re-confirmed with high accuracy for much larger systems.
引用
收藏
页数:19
相关论文
共 61 条
[1]   VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) :477-528
[2]  
Alicki R., 2007, Lecture Notes in Physics
[3]   Low-temperature transport in Heisenberg chains [J].
Alvarez, JV ;
Gros, C .
PHYSICAL REVIEW LETTERS, 2002, 88 (07) :4
[4]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[5]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[6]   ON GEOMETRIC ENTROPY [J].
CALLAN, C ;
WILCZEK, F .
PHYSICS LETTERS B, 1994, 333 (1-2) :55-61
[7]   INTEGRABILITY AND IDEAL CONDUCTANCE AT FINITE TEMPERATURES [J].
CASTELLA, H ;
ZOTOS, X ;
PRELOVSEK, P .
PHYSICAL REVIEW LETTERS, 1995, 74 (06) :972-975
[8]   Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces -: art. no. P04005 [J].
Daley, AJ ;
Kollath, C ;
Schollwöck, U ;
Vidal, G .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[9]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490
[10]   Finite-temperature density matrix renormalization using an enlarged Hilbert space [J].
Feiguin, AE ;
White, SR .
PHYSICAL REVIEW B, 2005, 72 (22)