Nanocrystalline Ce doped CoFe2O4 as an acetone gas sensor

被引:73
|
作者
Khandekar, M. S. [1 ]
Tarwal, N. L. [2 ,3 ]
Mulla, I. S. [4 ]
Suryavanshi, S. S. [1 ]
机构
[1] Solapur Univ, Dept Phys, Ferrite Mat Lab, Solapur 413255, India
[2] Gwangju Inst Sci & Technol, Res Inst Solar & Sustainable Energies RISE, Kwangju 500712, South Korea
[3] Gwangju Inst Sci & Technol, Sch Informat & Commun, Kwangju 500712, South Korea
[4] Natl Chem Lab, Div Phys Chem, Pune 411008, Maharashtra, India
关键词
Ferrite; CoFe2O4; Gas sensor; Molten-salt method; TEM; ZNO THIN-FILMS; SENSING PROPERTIES; FERRITE NANOPARTICLES; MAGNETIC-PROPERTIES; COBALT FERRITE; SURFACE; CO; PERFORMANCE; CU;
D O I
10.1016/j.ceramint.2013.06.021
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanocrystalline CoFe2-xCexO4 ferrites (x=0, 0.04, 0.08) were synthesized by using the inexpensive, simple and eco-friendly molten-salt (M-S) method. Effects of Ce doping on the structural, morphological and gas sensing properties of the CoFe2O4 ferrite were investigated. X-ray diffraction (XRD) analysis revealed the formation of spinel CoFe2O4. Transmission electron microscopy (TEM) investigations showed that the synthesized ferrite is made up of very fine spherical nanoparticles. Furthermore, the gas response of nanocrystalline ferrite materials was investigated in the temperature range of 200-450 degrees C toward the reducing gases like liquefied petroleum gas (LPG), acetone, ethanol and ammonia. The sensor response was found to be sensitive and selective toward acetone as compared to other reducing gases. It is observed that the addition of Ce (4 wt%) strongly influenced the response and the operating temperature of the sensor material and thus can serve as acetone-sensing sensors. (C) 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:447 / 452
页数:6
相关论文
共 50 条
  • [1] Double-layer microwave absorber based on nanocrystalline CoFe2O4 and CoFe2O4/PANI multi-core/shell composites
    Xu, Yewen
    Shen, Guozhu
    Wu, Hongyan
    Liu, Bin
    Fang, Xumin
    Zhang, Ding
    Zhu, Jun
    MATERIALS SCIENCE-POLAND, 2017, 35 (01): : 94 - 104
  • [2] Magnetic behavior of nanocrystalline CoFe2O4
    Zhang, Kai
    Holloway, T.
    Pradhan, A. K.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2011, 323 (12) : 1616 - 1622
  • [3] Structural and Magnetic Properties of Zn Doped CoFe2O4
    Roongtao, Rachanusorn
    Baitahe, Rattanai
    Vittayakorn, Naratip
    Klysubun, Wantana
    Vittayakorn, Wanwilai C.
    INTEGRATED FERROELECTRICS, 2013, 148 (01) : 145 - 152
  • [4] Neutron diffraction and Mossbauer spectroscopy studies for Ce doped CoFe2O4 nanoparticles
    Hashhash, A.
    Bobrikov, I
    Yehia, M.
    Kaiser, M.
    Uyanga, E.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 503
  • [5] Ethanol Gas Sensing of Mn-Doped CoFe2O4 Nanoparticles
    Devi, P. Indra
    Rajkumar, N.
    Renganathan, B.
    Sastikumar, D.
    Ramachandran, K.
    IEEE SENSORS JOURNAL, 2011, 11 (06) : 1395 - 1402
  • [6] Effect of Annealing Time on the Cation Distribution in Mn Doped CoFe2O4
    Roongtao, Rachanusorn
    Vittayakorn, Naratip
    Klysubun, Wantana
    Vittayakorn, Wanwilai C.
    FERROELECTRICS, 2016, 492 (01) : 43 - 53
  • [7] Controlled synthesis of CoFe2O4 nano-octahedra
    Lopes-Moriyama, Andre Luis
    Madigou, Veronique
    de Souza, Carlson Pereira
    Leroux, Christine
    POWDER TECHNOLOGY, 2014, 256 : 482 - 489
  • [8] Microwave Assisted Combustion Synthesis of Nanocrystalline CoFe2O4 for LPG Sensing
    Chaudhari, Prashant
    Acharya, S. A.
    Darunkar, S. S.
    Gaikwad, V. M.
    ADVANCED MATERIALS AND RADIATION PHYSICS (AMRP-2015), 2015, 1675
  • [9] The magnetization reversal in CoFe2O4/CoFe2 granular systems
    Jin, J.
    Sun, X.
    Wang, M.
    Ding, Z. L.
    Ma, Y. Q.
    JOURNAL OF NANOPARTICLE RESEARCH, 2016, 18 (12)
  • [10] Nanocrystalline Spinel CoFe2O4 Thin Films Deposited via Microwave-Assisted Synthesis for Sensing Application
    Umesh, Suma
    Usha, A.
    Bailey, Kiran
    Sujatha, K.
    Varadharajaperumal, S.
    Shivashankar, S. A.
    Raghavan, M. Srinidhi
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (09) : 5395 - 5404