Perfect Mendelsohn designs with block size six

被引:20
作者
Abel, RJR
Bennett, FE
Zhang, H
机构
[1] Univ New S Wales, Sch Math, Kensington, NSW 2033, Australia
[2] Mt St Vincent Univ, Dept Math, Halifax, NS B3M 2J6, Canada
[3] Univ Iowa, Dept Comp Sci, Iowa City, IA 52240 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
perfect Mendelsohn designs; Holey perfect Mendelsohn designs; balanced incomplete block designs; group divisible designs;
D O I
10.1016/S0378-3758(99)00114-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A necessary condition for the existence of a (v, k, lambda,)-perfect Mendelsohn design is lambda v(v-1) = 0 (mod k). For k = 6 and lambda = 1, this condition gives v = 0, 1,3 or 4 (mod 6). Miao and Zhu have investigated the cases v = 0,1 (mod 6). This paper provides several improvements on their results and also investigates the cases v = 3,4 (mod 6). For v = 1 (mod 6) we solve the problem completely; for v = 0, 3, 4 (mod 6), the largest unknown cases are for v = 198, 657, 148, respectively. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:287 / 319
页数:33
相关论文
共 31 条
[1]  
Abel RJR., 1996, C.R.C. Handbook of Combinatorial Designs, P111
[2]  
[Anonymous], 1985, DESIGN THEORY
[3]   Perfect Mendelsohn Packing Designs with Block Size Five [J].
Bennett F.E. ;
Yin J. ;
Zhang H. ;
Abel R.J.R. .
Designs, Codes and Cryptography, 1998, 14 (1) :5-22
[4]  
Bennett F.E., 1994, J COMB DES, V3, P171
[5]  
Bennett F. E., 1982, ANN DISCRETE MATH, V15, P63
[6]   RESOLVABLE PERFECT CYCLIC DESIGNS [J].
BENNETT, FE ;
MENDELSOHN, E ;
MENDELSOHN, NS .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1980, 29 (02) :142-150
[7]   ON THE EXISTENCE OF PERFECT MENDELSOHN DESIGNS WITH K = 7 AND LAMBDA EVEN [J].
BENNETT, FE ;
YIN, J ;
ZHU, L .
DISCRETE MATHEMATICS, 1993, 113 (1-3) :7-25
[8]  
BENNETT FE, 1990, ARS COMBINATORIA, V29, P65
[9]   EXISTENCE OF PERFECT MENDELSOHN DESIGNS WITH K=5 AND LAMBDA-GREATER-THAN-1 [J].
BENNETT, FE ;
PHELPS, KT ;
RODGER, CA ;
YIN, J ;
ZHU, L .
DISCRETE MATHEMATICS, 1992, 103 (02) :129-137
[10]  
Bennett FE, 1997, J COMB DES, V5, P257