Adaptive filtering based on recursive minimum error entropy criterion

被引:33
作者
Wang, Gang [1 ]
Peng, Bei [2 ]
Feng, Zhenyu [2 ]
Yang, Xinyue [1 ]
Deng, Jing [2 ]
Wang, Nianci [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive filtering; Mean square error (MSE); Minimum error entropy (MEE); Recursive least square (RLS); Recursive minimum error entropy (RMEE); NOISE; CANCELLATION; CONVERGENCE; ALGORITHM;
D O I
10.1016/j.sigpro.2020.107836
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a robust adaptive algorithm, called recursive minimum error entropy, is derived under the minimum error entropy criterion. The new algorithm can perform robustly under impulsive noise. Theoretical analyses and numerical simulations revealed that the new algorithm performs better than the recursive least squares and recursive maximum correntropy algorithm. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 26 条
[1]  
Albu F, 2015, EUR SIGNAL PR CONF, P290, DOI 10.1109/EUSIPCO.2015.7362391
[2]   Low-complexity adaptive decision-feedback equalization of MIMO channels [J].
Arablouei, Reza ;
Dogancay, Kutluyil .
SIGNAL PROCESSING, 2012, 92 (06) :1515-1524
[3]   Minimum Error Entropy Kalman Filter [J].
Chen, Badong ;
Dang, Lujuan ;
Gu, Yuantao ;
Zheng, Nanning ;
Principe, Jose C. .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (09) :5819-5829
[4]   Kernel Risk-Sensitive Loss: Definition, Properties and Application to Robust Adaptive Filtering [J].
Chen, Badong ;
Xing, Lei ;
Xu, Bin ;
Zhao, Haiquan ;
Zheng, Nanning ;
Principe, Jose C. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (11) :2888-2901
[5]   Generalized Correntropy for Robust Adaptive Filtering [J].
Chen, Badong ;
Xing, Lei ;
Zhao, Haiquan ;
Zheng, Nanning ;
Principe, Jose C. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (13) :3376-3387
[6]   Convergence of a Fixed-Point Algorithm under Maximum Correntropy Criterion [J].
Chen, Badong ;
Wang, Jianji ;
Zhao, Haiquan ;
Zheng, Nanning ;
Principe, Jose C. .
IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (10) :1723-1727
[7]   Mean-Square Convergence Analysis of ADALINE Training With Minimum Error Entropy Criterion [J].
Chen, Badong ;
Zhu, Yu ;
Hu, Jinchun .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (07) :1168-1179
[8]   Multipath Estimation Based on Modified ε-Constrained Rank-Based Differential Evolution With Minimum Error Entropy [J].
Cheng, Lan ;
Yue, Hong ;
Xing, Yanjun ;
Ren, Mifeng .
IEEE ACCESS, 2018, 6 :61569-61582
[9]   Recursive Maximum Correntropy Learning Algorithm With Adaptive Kernel Size [J].
Hamid, Radmanesh ;
Hajiabadi, Mojtaba .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2018, 65 (07) :958-962
[10]  
Haykin S, 2014, SIGNALSANDSYSTEMS