Three-dimensional modeling of melt flow and interface shape in the industrial liquid-encapsulated Czochralski growth of GaAs

被引:20
作者
Vizman, D
Eichler, S
Friedrich, J
Müller, G
机构
[1] Tech Univ Timisoara, Fac Phys, RO-1900 Timisoara, Romania
[2] Freiberger Cmpd Mat GmbH, D-09599 Freiburg, Germany
[3] Fraunhofer Inst IISB Erlangen, Crystal Growth Lab, D-91058 Erlangen, Germany
关键词
computer simulation; convection; heat transfer; magnetic fields; liquid encapsulated Czochralski method; gallium arsenide;
D O I
10.1016/j.jcrysgro.2004.02.070
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The heat transport in the melt and in the crystal including the interface shape was numerically investigated by local, fully three-dimensional (3D), time-dependent simulations for an industrially sized liquid-encapsulated Czochralski setup for growing GaAs crystals with 150 mm diameter. The thermal boundary conditions for the local 3D simulations were obtained from global quasi-steady 2D simulations. It was found that the type of thermal boundary conditions (fixed temperature or heat flux) has a strong influence on the 3D results of the interface shape and on the melt convection. Furthermore, a high sensitivity of the interface deflection on the temperature at the bottom wall of the crucible is observed. For a control of the interface shape the use of two types of magnetic fields (horizontal and vertical) was considered. It was found that a horizontal magnetic field has a bigger influence on the interface shape than a vertical magnetic field. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:396 / 403
页数:8
相关论文
共 9 条
[1]  
[Anonymous], 1990, MAGNETOHYDRODYNAMICS
[2]   Prediction of the melt/crystal interface geometry in liquid encapsulated Czochralski growth of InP bulk crystals [J].
Bystrova, EN ;
Kalaev, VV ;
Smirnova, OV ;
Yakovlev, EV ;
Makarov, YN .
JOURNAL OF CRYSTAL GROWTH, 2003, 250 (1-2) :189-194
[3]   Melt-solid interface shape in LEC GaAs crystals: Comparison between calculated and experimentally observed shapes [J].
Carra, S ;
Fogliani, S ;
Masi, M ;
Zanotti, L ;
Mucchino, C ;
Paorici, C .
JOURNAL OF CRYSTAL GROWTH, 1996, 166 (1-4) :641-645
[4]   MODELING OF THERMAL FLUID-FLOW IN THE LIQUID ENCAPSULATED CZOCHRALSKI PROCESS AND COMPARISON WITH EXPERIMENTS [J].
KOAI, K ;
SEIDL, A ;
LEISTER, HJ ;
MULLER, G ;
KOHLER, A .
JOURNAL OF CRYSTAL GROWTH, 1994, 137 (1-2) :41-47
[5]   NUMERICAL-ANALYSIS OF HEAT-TRANSFER IN LEC GROWTH OF GAAS [J].
SABHAPATHY, P ;
SALCUDEAN, ME .
JOURNAL OF CRYSTAL GROWTH, 1989, 97 (01) :125-135
[6]   200 mm GaAs crystal growth by the temperature gradient controlled LEC method [J].
Seidl, A ;
Eichler, S ;
Flade, T ;
Jurisch, M ;
Köhler, A ;
Kretzer, U ;
Weinert, B .
JOURNAL OF CRYSTAL GROWTH, 2001, 225 (2-4) :561-565
[7]   Comparison of the predictions from 3D numerical simulation with temperature distributions measured in Si Czochralski melts under the influence of different magnetic fields [J].
Vizman, D ;
Friedrich, J ;
Müller, G .
JOURNAL OF CRYSTAL GROWTH, 2001, 230 (1-2) :73-80
[8]   Three-dimensional numerical simulation of thermal convection in an industrial Czochralski melt:: comparison to experimental results [J].
Vizman, D ;
Gräbner, O ;
Müller, G .
JOURNAL OF CRYSTAL GROWTH, 2001, 233 (04) :687-698
[9]   Modeling analysis of VCz growth of GaAs bulk crystals using 3D unsteady melt flow simulations [J].
Yakovlev, E ;
Smirnova, OV ;
Bystrova, EN ;
Kalaev, VV ;
Frank-Rotsch, C ;
Neubert, M ;
Rudolph, P ;
Makarov, YN .
JOURNAL OF CRYSTAL GROWTH, 2003, 250 (1-2) :195-202