Robin problems with indefinite, unbounded potential and reaction of arbitrary growth

被引:27
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[3] Simion Stoilow Romanian Acad, Inst Math, Bucharest 014700, Romania
来源
REVISTA MATEMATICA COMPLUTENSE | 2016年 / 29卷 / 01期
关键词
Indefinite and unbounded potential; Robin boundary condition; Constant sign and nodal solutions; Multiplicity theorem; Critical groups; NEUMANN PROBLEMS; ELLIPTIC-EQUATIONS; DIRICHLET PROBLEMS; MULTIPLE SOLUTIONS; SIGN;
D O I
10.1007/s13163-015-0181-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an elliptic Robin problem driven by the negative Laplacian plus an indefinite and unbounded potential and with a reaction of arbitrary growth which exhibits z-dependent zeros of constant sign. We prove multiplicity theorems producing three or four nontrivial solutions, all with precise sign information. As a particular case we consider a generalized equidiffusive logistic equation with potential.
引用
收藏
页码:91 / 126
页数:36
相关论文
共 29 条
[1]  
Aizicovici S., 2008, MEM AM MATH SOC, V196, P915, DOI DOI 10.1090/MEMO/0915
[2]   ON A CLASS OF NONLINEAR DIRICHLET PROBLEMS WITH MULTIPLE SOLUTIONS [J].
AMBROSETTI, A ;
LUPO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (10) :1145-1150
[3]  
Ambrosetti A., 1979, Nonlinear Anal, V3, P635, DOI [10.1016/0362-546X(79)90092-0, DOI 10.1016/0362-546X(79)90092-0]
[4]  
[Anonymous], 1990, Variational Methods: Applications to Non-linear Partial Differential Equations and Hamiltonian Systems
[5]  
BREZIS H, 1993, CR ACAD SCI I-MATH, V317, P465
[6]  
Chang K.-c., 1993, Progress in Nonlinear Differential Equations and their Applications, V6
[7]   STRICT MONOTONICITY OF EIGENVALUES AND UNIQUE CONTINUATION [J].
DEFIGUEIREDO, DG ;
GOSSEZ, JP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (1-2) :339-346
[8]  
Dunford N., 1958, Linear Operators
[9]   EXISTENCE OF FIVE NONZERO SOLUTIONS WITH EXACT SIGN FOR A p-LAPLACIAN EQUATION [J].
Filippakis, Michael ;
Kristaly, Alexandru ;
Papageorgiou, Nikolas S. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (02) :405-440
[10]   Multiple constant sign and nodal solutions for nonlinear elliptic equations with the p-Laplacian [J].
Filippakis, Michael E. ;
Papageorgiou, Nikolaos S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (07) :1883-1922