Facile synthesis of PVP-assisted PtRu/RGO nanocomposites with high electrocatalytic performance for methanol oxidation

被引:45
作者
Bin, Duan [1 ]
Ren, Fangfang [1 ]
Wang, Huiwen [1 ]
Zhang, Ke [1 ]
Yang, Beibei [1 ]
Zhai, Chunyang [1 ]
Zhu, Mingshan [1 ,2 ]
Yang, Ping [1 ]
Du, Yukou [1 ]
机构
[1] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Peoples R China
[2] Chinese Acad Sci, Inst Chem, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
REDUCED GRAPHENE OXIDE; NANOPARTICLE HYBRIDS; ELECTROOXIDATION; FABRICATION; CATALYSTS; SUPPORT; ETHANOL; ANODE;
D O I
10.1039/c4ra07742c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we report a facile approach for the synthesis of polyvinylpyrrolidone (PVP)-stabilized PtRu/RGO nanocomposites (PtRu/RGO/PVP) by the one-pot method. The structure, morphology and composition of the as-prepared catalysts were characterized by Raman, transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX), respectively. It was found that PVP plays an important role in controlling the size of PtRu nanoparticles (NPs) as well as their dispersion stability. TEM images show that as-prepared PtRu NPs with a mean particle size of about 3.09 nm are uniformly dispersed on the RGO surface in the presence of PVP. The electrocatalytic properties of the as-prepared catalysts were evaluated by cyclic voltammetry (CV) and chronoamperometry (CA). Compared to PtRu/RGO and PtRu/PVP catalysts, our PtRu/RGO/PVP hybrids exhibited enhanced electrocatalytic activity and stability for the methanol oxidation reaction. Moreover, our multicomposites also showed higher electrocatalytic performance than the commercial PtRu/C catalysts. The PtRu/RGO/PVP nanostructures with an optimized molar ratio of Pt/Ru (1 : 1) displayed 1.96 times greater stability than the commercial PtRu/C nanospecies. These findings indicated that PtRu/RGO catalysts show a promising future of potential applications in direct methanol fuel cells with the assistance of PVP stabilized.
引用
收藏
页码:39612 / 39618
页数:7
相关论文
共 38 条
[1]   Graphene as a new carbon support for low-temperature fuel cell catalysts [J].
Antolini, Ermete .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 123 :52-68
[2]  
Aricò AS, 2001, FUEL CELLS, V1, P133
[3]   Initial Stages of Oxidation on Graphitic Surfaces: Photoemission Study and Density Functional Theory Calculations [J].
Barinov, Alexei ;
Malcioglu, O. Baris ;
Fabris, Stefano ;
Sun, Tao ;
Gregoratti, Luca ;
Dalmiglio, Matteo ;
Kiskinova, Maya .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (21) :9009-9013
[4]   Nanocatalyst for direct methanol fuel cell (DMFC) [J].
Basri, S. ;
Kamarudin, S. K. ;
Daud, W. R. W. ;
Yaakub, Z. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (15) :7957-7970
[5]   Recent Advances in the Stabilization of Platinum Electrocatalysts for Fuel-Cell Reactions [J].
Cao, Minna ;
Wu, Dongshuang ;
Cao, Rong .
CHEMCATCHEM, 2014, 6 (01) :26-45
[6]   Controlled Synthesis of PtRu/Graphene Nanocatalysts with Enhanced Methanol Oxidation Activity for Fuel Cells [J].
Cong, Huai-Ping ;
Ren, Xiao-Chen ;
Yu, Shu-Hong .
CHEMCATCHEM, 2012, 4 (10) :1555-1559
[7]   Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation [J].
Dong, Lifeng ;
Gari, Raghavendar Reddy Sanganna ;
Li, Zhou ;
Craig, Michael M. ;
Hou, Shifeng .
CARBON, 2010, 48 (03) :781-787
[8]   A Green Approach to the Synthesis of Graphene Nanosheets [J].
Guo, Hui-Lin ;
Wang, Xian-Fei ;
Qian, Qing-Yun ;
Wang, Feng-Bin ;
Xia, Xing-Hua .
ACS NANO, 2009, 3 (09) :2653-2659
[9]   Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation [J].
Guo, Shaojun ;
Dong, Shaojun ;
Wang, Erkang .
ACS NANO, 2010, 4 (01) :547-555
[10]   Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells [J].
Hsin, Yu Lin ;
Hwang, Kuo Chu ;
Yeh, Chuin-Tih .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (32) :9999-10010