Integrative Analysis of High-throughput Cancer Studies With Contrasted Penalization

被引:23
作者
Shi, Xingjie [1 ,2 ]
Liu, Jin [3 ]
Huang, Jian [4 ,5 ]
Zhou, Yong [2 ]
Shia, BenChang [6 ]
Ma, Shuangge [1 ,7 ]
机构
[1] Yale Univ, Sch Publ Hlth, Dept Biostat, New Haven, CT USA
[2] Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
[3] UIC Sch Publ Hlth, Div Epidemiol & Biostat, Chicago, IL USA
[4] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
[5] Univ Iowa, Dept Biostat, Iowa City, IA USA
[6] FuJen Catholic Univ, Dept Stat & Informat Sci, New Taipei City, Taiwan
[7] VA Cooperat Studies Program Coordinating Ctr, West Haven, CT USA
关键词
integrative analysis; contrasted penalization; marker selection; high-throughput cancer studies; PROGNOSIS; IDENTIFICATION; CONVERGENCE; MARKERS;
D O I
10.1002/gepi.21781
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In cancer studies with high-throughput genetic and genomic measurements, integrative analysis provides a way to effectively pool and analyze heterogeneous raw data from multiple independent studies and outperforms classic meta-analysis and single-dataset analysis. When marker selection is of interest, the genetic basis of multiple datasets can be described using the homogeneity model or the heterogeneity model. In this study, we consider marker selection under the heterogeneity model, which includes the homogeneity model as a special case and can be more flexible. Penalization methods have been developed in the literature for marker selection. This study advances from the published ones by introducing the contrast penalties, which can accommodate the within- and across-dataset structures of covariates/regression coefficients and, by doing so, further improve marker selection performance. Specifically, we develop a penalization method that accommodates the across-dataset structures by smoothing over regression coefficients. An effective iterative algorithm, which calls an inner coordinate descent iteration, is developed. Simulation shows that the proposed method outperforms the benchmark with more accurate marker identification. The analysis of breast cancer and lung cancer prognosis studies with gene expression measurements shows that the proposed method identifies genes different from those using the benchmark and has better prediction performance.
引用
收藏
页码:144 / 151
页数:8
相关论文
共 50 条
[31]   Quantitative proteomic analysis for high-throughput screening of differential glycoproteins in hepatocellular carcinoma serum [J].
Gao, Hua-Jun ;
Chen, Ya-Jing ;
Zuo, Duo ;
Xiao, Ming-Ming ;
Li, Ying ;
Guo, Hua ;
Zhang, Ning ;
Chen, Rui-Bing .
CANCER BIOLOGY & MEDICINE, 2015, 12 (03) :246-254
[32]   Analysis of High-Throughput Sequencing and Annotation Strategies for Phage Genomes [J].
Henn, Matthew R. ;
Sullivan, Matthew B. ;
Stange-Thomann, Nicole ;
Osburne, Marcia S. ;
Berlin, Aaron M. ;
Kelly, Libusha ;
Yandava, Chandri ;
Kodira, Chinnappa ;
Zeng, Qiandong ;
Weiand, Michael ;
Sparrow, Todd ;
Saif, Sakina ;
Giannoukos, Georgia ;
Young, Sarah K. ;
Nusbaum, Chad ;
Birren, Bruce W. ;
Chisholm, Sallie W. .
PLOS ONE, 2010, 5 (02)
[33]   Statistical methods for analysis of high-throughput RNA interference screens [J].
Birmingham, Amanda ;
Selfors, Laura M. ;
Forster, Thorsten ;
Wrobel, David ;
Kennedy, Caleb J. ;
Shanks, Emma ;
Santoyo-Lopez, Javier ;
Dunican, Dara J. ;
Long, Aideen ;
Kelleher, Dermot ;
Smith, Queta ;
Beijersbergen, Roderick L. ;
Ghazal, Peter ;
Shamu, Caroline E. .
NATURE METHODS, 2009, 6 (08) :569-575
[34]   An optimised assay for quantitative, high-throughput analysis of polysialyltransferase activity [J].
Elkashef, Sara M. ;
Sutherland, Mark ;
Patterson, Laurence H. ;
Loadman, Paul M. ;
Falconer, Robert A. .
ANALYST, 2016, 141 (20) :5849-5856
[35]   Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data [J].
Althammer, Sonja ;
Gonzalez-Vallinas, Juan ;
Ballare, Cecilia ;
Beato, Miguel ;
Eyras, Eduardo .
BIOINFORMATICS, 2011, 27 (24) :3333-3340
[36]   High-throughput analysis of the transcriptional patterns of sexual genes in malaria [J].
Cruz Camacho, Abel ;
Kiper, Edo ;
Oren, Sonia ;
Zaharoni, Nir ;
Nir, Netta ;
Soffer, Noam ;
Noy, Yael ;
Ben David, Bar ;
Rivkin, Anna ;
Rotkopf, Ron ;
Michael, Dan ;
Carvalho, Teresa G. ;
Regev-Rudzki, Neta .
PARASITES & VECTORS, 2023, 16 (01)
[37]   Viral Metagenomics: Analysis of Begomoviruses by Illumina High-Throughput Sequencing [J].
Idris, Ali ;
Al-Saleh, Mohammed ;
Piatek, Marek J. ;
Al-Shahwan, Ibrahim ;
Ali, Shahjahan ;
Brown, Judith K. .
VIRUSES-BASEL, 2014, 6 (03) :1219-1236
[38]   High Resolution Melting (HRM) for High-Throughput GenotypingLimitations and Caveats in Practical Case Studies [J].
Slomka, Marcin ;
Sobalska-Kwapis, Marta ;
Wachulec, Monika ;
Bartosz, Grzegorz ;
Strapagiel, Dominik .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (11)
[39]   High-throughput assessment of the antibody profile in ovarian cancer ascitic fluids [J].
Antony, Frank ;
Deantonio, Cecilia ;
Cotella, Diego ;
Soluri, Maria Felicia ;
Tarasiuk, Olga ;
Raspagliesi, Francesco ;
Adorni, Fulvio ;
Piazza, Silvano ;
Ciani, Yari ;
Santoro, Claudio ;
Macor, Paolo ;
Mezzanzanica, Delia ;
Sblattero, Daniele .
ONCOIMMUNOLOGY, 2019, 8 (09)
[40]   The Pursuit of Therapeutic Biomarkers with High-Throughput Cancer Cell Drug Screens [J].
Williams, Steven P. ;
McDermott, Ultan .
CELL CHEMICAL BIOLOGY, 2017, 24 (09) :1066-1074