A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction

被引:156
作者
Spooner, Annette [1 ]
Chen, Emily [1 ]
Sowmya, Arcot [1 ]
Sachdev, Perminder [2 ,3 ]
Kochan, Nicole A. [3 ]
Trollor, Julian [2 ,3 ,4 ]
Brodaty, Henry [2 ,3 ]
机构
[1] UNSW Sydney, Sch Comp Sci & Engn, Sydney, NSW, Australia
[2] UNSW Sydney, Sch Psychiat, Sydney, NSW, Australia
[3] UNSW Sydney, Ctr Hlth Brain Ageing CHeBA, Sydney, NSW, Australia
[4] UNSW Sydney, Dept Dev Disabil Neuropsychiat, Sch Psychiat, Sydney, NSW, Australia
基金
加拿大健康研究院; 美国国家卫生研究院; 英国医学研究理事会;
关键词
SYDNEY MEMORY; ALZHEIMERS-DISEASE; FEATURE-EXTRACTION; CLASSIFICATION; IMPUTATION; MODELS;
D O I
10.1038/s41598-020-77220-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Data collected from clinical trials and cohort studies, such as dementia studies, are often high-dimensional, censored, heterogeneous and contain missing information, presenting challenges to traditional statistical analysis. There is an urgent need for methods that can overcome these challenges to model this complex data. At present there is no cure for dementia and no treatment that can successfully change the course of the disease. Machine learning models that can predict the time until a patient develops dementia are important tools in helping understand dementia risks and can give more accurate results than traditional statistical methods when modelling high-dimensional, heterogeneous, clinical data. This work compares the performance and stability of ten machine learning algorithms, combined with eight feature selection methods, capable of performing survival analysis of high-dimensional, heterogeneous, clinical data. We developed models that predict survival to dementia using baseline data from two different studies. The Sydney Memory and Ageing Study (MAS) is a longitudinal cohort study of 1037 participants, aged 70-90 years, that aims to determine the effects of ageing on cognition. The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a longitudinal study aimed at identifying biomarkers for the early detection and tracking of Alzheimer's disease. Using the concordance index as a measure of performance, our models achieve maximum performance values of 0.82 for MAS and 0.93 For ADNI.
引用
收藏
页数:10
相关论文
共 38 条
[1]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[2]   Predicting survival from microarray data -: a comparative study [J].
Bovelstad, H. M. ;
Nygard, S. ;
Storvold, H. L. ;
Aldrin, M. ;
Borgan, O. ;
Frigessi, A. ;
Lingjaerde, O. C. .
BIOINFORMATICS, 2007, 23 (16) :2080-2087
[3]   Cognition and mortality in older people: the Sydney Memory and Ageing Study [J].
Connors, Michael H. ;
Sachdev, Perminder S. ;
Kochan, Nicole A. ;
Xu, Jing ;
Draper, Brian ;
Brodaty, Henry .
AGE AND AGEING, 2015, 44 (06) :1049-1054
[4]  
COX DR, 1972, J R STAT SOC B, V34, P187
[5]   Predicting the development of mild cognitive impairment: A new use of pattern recognition [J].
Cui, Yue ;
Sachdev, Perminder S. ;
Lipnicki, Darren M. ;
Jin, Jesse S. ;
Luo, Suhuai ;
Zhu, Wanlin ;
Kochan, Nicole A. ;
Reppermund, Simone ;
Liu, Tao ;
Trollor, Julian N. ;
Brodaty, Henry ;
Wen, Wei .
NEUROIMAGE, 2012, 60 (02) :894-901
[6]   Investigating the prediction ability of survival models based on both clinical and omics data: two case studies [J].
De Bin, Riccardo ;
Sauerbrei, Willi ;
Boulesteix, Anne-Laure .
STATISTICS IN MEDICINE, 2014, 33 (30) :5310-5329
[7]   Approximate statistical tests for comparing supervised classification learning algorithms [J].
Dietterich, TG .
NEURAL COMPUTATION, 1998, 10 (07) :1895-1923
[8]  
Friedman J., 2009, ELEMENTS STAT LEARNI, DOI [DOI 10.1007/978-0-387-84858-7, DOI 10.1007/978-0-387-21606-514]
[9]   EVALUATING THE YIELD OF MEDICAL TESTS [J].
HARRELL, FE ;
CALIFF, RM ;
PRYOR, DB ;
LEE, KL ;
ROSATI, RA .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1982, 247 (18) :2543-2546
[10]   Alcohol Consumption and Incident Dementia: Evidence from the Sydney Memory and Ageing Study [J].
Heffernan, Megan ;
Mather, Karen A. ;
Xu, Jing ;
Assareh, Amelia A. ;
Kochan, Nicole A. ;
Reppermund, Simone ;
Draper, Brian ;
Trollor, Julian N. ;
Sachdev, Perminder ;
Brodaty, Henry .
JOURNAL OF ALZHEIMERS DISEASE, 2016, 52 (02) :529-538