Skew Standard Domino Tableaux and Partial Motzkin Paths

被引:1
作者
Cheng, Ting-Yuan [1 ]
Eu, Sen-Peng [2 ]
Fu, Tung-Shan [3 ]
Lee, Yi-Lin [4 ]
机构
[1] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 10617, Taiwan
[2] Chinese Air Force Acad, Kaohsiung 82047, Taiwan
[3] Natl Pingtung Univ, Dept Appl Math, Pingtung 90003, Taiwan
[4] Natl Cent Univ, Dept Math, Taoyuan 32001, Taiwan
关键词
standard domino tableaux; skew standard domino tableaux; Motzkin paths; partial Motzkin paths;
D O I
10.1007/s00026-017-0340-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a bijection between standard domino tableaux with at most three rows and partial Motzkin paths. Moreover, we establish a connection between skew standard domino tableaux with at most three rows and a variant of partial Motzkin paths within the nonnegative quadrant and enumerate such tableaux with n dominoes in terms of linear combinations of Motzkin numbers.
引用
收藏
页码:43 / 71
页数:29
相关论文
共 12 条
[1]   Motzkin numbers [J].
Aigner, M .
EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (06) :663-675
[2]   PRIMITIVE-IDEALS AND ORBITAL INTEGRALS IN COMPLEX CLASSICAL-GROUPS [J].
BARBASCH, D ;
VOGAN, D .
MATHEMATISCHE ANNALEN, 1982, 259 (02) :153-199
[3]   On Domino Insertion and Kazhdan-Lusztig Cells in Type Bn [J].
Bonnafe, Cedric ;
Geck, Meinolf ;
Iancu, Lacrimioara ;
Lam, Thomas .
REPRESENTATION THEORY OF ALGEBRAIC GROUPS AND QUANTUM GROUPS, 2010, 284 :33-+
[4]   Matrix identities on weighted partial Motzkin paths [J].
Chen, William Y. C. ;
Li, Nelson Y. ;
Shapiro, Louis W. ;
Yan, Sherry H. F. .
EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (04) :1196-1207
[5]   Enumerating rc-Invariant Permutations with No Long Decreasing Subsequences [J].
Egge, Eric S. .
ANNALS OF COMBINATORICS, 2010, 14 (01) :85-101
[6]   Standard Young tableaux and colored Motzkin paths [J].
Eu, Sen-Peng ;
Fu, Tung-Shan ;
Hou, Justin T. ;
Hsu, Te-Wei .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (07) :1786-1803
[7]   Skew-standard tableaux with three rows [J].
Eu, Sen-Peng .
ADVANCES IN APPLIED MATHEMATICS, 2010, 45 (04) :463-469
[8]  
Kim J. H., 2011, ARXIV11073873
[9]  
Niederhausen H., 2012, INTEGERS, V12
[10]  
The OEIS Foundation Inc, ON LINE ENCY INTEGER