Analysis of dark soliton generation in the microcavity with mode-interaction*

被引:0
作者
Xu, Xin [1 ]
Jin, Xueying [1 ]
Cheng, Jie [1 ]
Gao, Haoran [1 ]
Lu, Yang [1 ]
Yu, Liandong [1 ]
机构
[1] Hefei Univ Technol, Sch Instrument Sci & Optoelect Engn, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
dark soliton; microcavity; mode-interaction;
D O I
10.1088/1674-1056/abc3b4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Mode-interaction plays an important role in the dark soliton generation in the microcavity. It is beneficial to the excitation of dark solitons, but also facilitates a variety of dark soliton states. Based on the non-normalized Lugiato-Lefever equation, the evolution of dark soliton in the microcavity with mode-interaction is investigated. By means of mode-interaction, the initial continuous wave (CW) field evolves into a dark soliton gradually, and the spectrum expands from a single mode to a broadband comb. After changing the mode-interaction parameters, the original modes which result in dual circular dark solitons inside the microcavity, are separated from the resonant mode by 2 free spectral ranges (FSR). When the initial field is another feasible pattern of weak white Gaussian noise, the large frequency detuning leads to the amplification of the optical power in the microcavity, and the mode-interaction becomes stronger. Then, multiple dark solitons, which correspond to the spectra with multi-FSR, can be excited by selecting appropriate mode-interaction parameters. In addition, by turning the mode-interaction parameters, the dark soliton number can be regulated, and the comb tooth interval in the spectrum also changes accordingly. Theoretical analysis results are significant for studying the dark soliton in the microcavity with mode-interaction.
引用
收藏
页数:6
相关论文
共 20 条
[1]   Spatial mode-interaction induced single soliton generation in microresonators [J].
Bao, Chengying ;
Xuan, Yi ;
Leaird, Daniel E. ;
Wabnitz, Stefan ;
Qi, Minghao ;
Weiner, Andrew M. .
OPTICA, 2017, 4 (09) :1011-1015
[2]   Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion [J].
Del'Haye, P. ;
Arcizet, O. ;
Gorodetsky, M. L. ;
Holzwarth, R. ;
Kippenberg, T. J. .
NATURE PHOTONICS, 2009, 3 (09) :529-533
[3]  
Del'Haye P, 2016, NAT PHOTONICS, V10, P516, DOI [10.1038/nphoton.2016.105, 10.1038/NPHOTON.2016.105]
[4]   Spectral line-by-line pulse shaping of on-chip microresonator frequency combs [J].
Ferdous, Fahmida ;
Miao, Houxun ;
Leaird, Daniel E. ;
Srinivasan, Kartik ;
Wang, Jian ;
Chen, Lei ;
Varghese, Leo Tom ;
Weiner, Andrew M. .
NATURE PHOTONICS, 2011, 5 (12) :770-776
[5]   Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes [J].
Godey, Cyril ;
Balakireva, Irina V. ;
Coillet, Aurelien ;
Chembo, Yanne K. .
PHYSICAL REVIEW A, 2014, 89 (06)
[6]   Generation of optical frequency combs with a CaF2 resonator [J].
Grudinin, Ivan S. ;
Yu, Nan ;
Maleki, Lute .
OPTICS LETTERS, 2009, 34 (07) :878-880
[7]   COUPLED-MODE THEORY [J].
HAUS, HA ;
HUANG, WP .
PROCEEDINGS OF THE IEEE, 1991, 79 (10) :1505-1518
[8]   Spatiotemporal evolution of continuous-wave field and dark soliton formation in a microcavity with normal dispersion [J].
Hu, Xiaohong ;
Zhang, Wei ;
Liu, Yuanshan ;
Feng, Ye ;
Zhang, Wenfu ;
Wang, Leiran ;
Wang, Yishan ;
Zhao, Wei .
CHINESE PHYSICS B, 2017, 26 (07)
[9]   Chip-based frequency combs with sub-100 GHz repetition rates [J].
Johnson, Adrea R. ;
Okawachi, Yoshitomo ;
Levy, Jacob S. ;
Cardenas, Jaime ;
Saha, Kasturi ;
Lipson, Michal ;
Gaeta, Alexander L. .
OPTICS LETTERS, 2012, 37 (05) :875-877
[10]   Thermal Effects on Kerr Comb Generation in a CaF2 Whispering-Gallery Mode Microcavity [J].
Kobatake, Tomoya ;
Kato, Takumi ;
Itobe, Hiroki ;
Nakagawa, Yosuke ;
Tanabe, Takasumi .
IEEE PHOTONICS JOURNAL, 2016, 8 (02)