Temperature-modulated graphene oxide resistive humidity sensor for indoor air quality monitoring

被引:72
作者
De Luca, A. [1 ]
Santra, S. [2 ]
Ghosh, R. [3 ]
Ali, S. Z. [4 ]
Gardner, J. W. [4 ,5 ]
Guha, P. K. [3 ]
Udrea, F. [1 ,4 ]
机构
[1] Univ Cambridge, Elect Engn Div, Dept Engn, 9 JJ Thomson Ave, Cambridge CB3 0FA, England
[2] Indian Inst Technol, Dept Phys, Kharagpur 721302, W Bengal, India
[3] Indian Inst Technol, E&ECE Dept, Kharagpur 721302, W Bengal, India
[4] Cambridge CMOS Sensors Ltd, Deanland House,160 Cowley Rd, Cambridge CB4 0DL, England
[5] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
LAYER-BY-LAYER; HIGH-SENSITIVITY; GAS SENSORS; SENSING PROPERTIES; FILM; CONDUCTIVITY; VENTILATION; HEALTH;
D O I
10.1039/c5nr08598e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary-metal-oxide-semiconductor (CMOS) micro-electro-mechanical-system (MEMS) micro-hotplate technology for the monitoring and control of indoor air quality (IAQ). GO powder is obtained by chemical exfoliation, dispersed in water and deposited via ink-jet printing onto a low power micro-hotplate. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) show the typical layered and wrinkled morphology of the GO. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red (FTIR) spectroscopy indicate that the GO flakes possess a significant number of oxygen containing functional groups (epoxy, carbonyl, hydroxyl) extremely attractive for humidity detection. Electro-thermal characterisation of the micro-hotplates shows a thermal efficiency of 0.11 mW per degrees C, resulting in a sensor DC power consumption of only w2.75 mW at 50 degrees C. When operated in an isothermal mode, the sensor response is detrimentally affected by significant drift, hysteretic behaviour, slow response/recovery times and hence poor RH level discrimination. Conversely, a temperature modulation technique coupled with a differential readout methodology results in a significant reduction of the sensor drift, improved linear response with a sensitivity of 0.14 mV per %, resolution below 5%, and a maximum hysteresis of +/- 5%; response and recovery times equal to 189 +/- 49 s and 89 +/- 5 s, respectively. These performance parameters satisfy current IAQ monitoring requirements. We have thus demonstrated the effectiveness of integrating GO on a micro-hotplate CMOS-compatible platform enabling temperature modulation schemes to be easily applied in order to achieve compact, low power, low cost humidity IAQ monitoring.
引用
收藏
页码:4565 / 4572
页数:8
相关论文
共 38 条
  • [1] Tungsten-Based SOI Microhotplates for Smart Gas Sensors
    Ali, Syed Z.
    Udrea, Florin
    Milne, William I.
    Gardner, Julian W.
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2008, 17 (06) : 1408 - 1417
  • [2] ELECTRICAL CONDUCTIVITY OF SILICA GEL IN PRESENCE OF ADSORBED WATER
    ANDERSON, JH
    PARKS, GA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1968, 72 (10) : 3662 - &
  • [3] Metal oxide-based gas sensor research: How to?
    Barsan, N.
    Koziej, D.
    Weimar, U.
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2007, 121 (01) : 18 - 35
  • [4] Recent developments on graphene and graphene oxide based solid state gas sensors
    Basu, S.
    Bhattacharyya, P.
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2012, 173 : 1 - 21
  • [5] Ultrahigh humidity sensitivity of graphene oxide
    Bi, Hengchang
    Yin, Kuibo
    Xie, Xiao
    Ji, Jing
    Wan, Shu
    Sun, Litao
    Terrones, Mauricio
    Dresselhaus, Mildred S.
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [6] Ultrafast Graphene Oxide Humidity Sensors
    Borini, Stefano
    White, Richard
    Wei, Di
    Astley, Michael
    Haque, Samiul
    Spigone, Elisabetta
    Harris, Nadine
    Kivioja, Jani
    Ryhanen, Tapani
    [J]. ACS NANO, 2013, 7 (12) : 11166 - 11173
  • [7] The chemistry of graphene oxide
    Dreyer, Daniel R.
    Park, Sungjin
    Bielawski, Christopher W.
    Ruoff, Rodney S.
    [J]. CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) : 228 - 240
  • [8] Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review
    Farahani, Hamid
    Wagiran, Rahman
    Hamidon, Mohd Nizar
    [J]. SENSORS, 2014, 14 (05) : 7881 - 7939
  • [9] Sensor-based demand-controlled ventilation: a review
    Fisk, WJ
    De Almeida, AT
    [J]. ENERGY AND BUILDINGS, 1998, 29 (01) : 35 - 45
  • [10] Gardner J.W., 2001, MICROSENSORS MEMS SM