Stability of the traveling waves for the derivative Schrodinger equation in the energy space

被引:11
作者
Miao, Changxing [1 ]
Tang, Xingdong [2 ]
Xu, Guixiang [1 ]
机构
[1] Inst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
[2] Beijing Computat Sci Res Ctr, 10 West Dongbeiwang Rd, Beijing 100193, Peoples R China
关键词
GLOBAL WELL-POSEDNESS; SOLITARY WAVES; ORBITAL STABILITY; MAGNETIC-FIELD; GROUND-STATES; SOLITONS; INSTABILITY; SUM;
D O I
10.1007/s00526-017-1128-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we continue the study of the dynamics of the traveling waves for nonlinear Schrodinger equation with derivative (DNLS) in the energy space. Under some technical assumptions on the speed of each traveling wave, the stability of the sum of two traveling waves for DNLS is obtained in the energy space by Martel-Merle-Tsai's analytic approach in Martel et al. (Commun Math Phys 231(2): 347-373, 2002, Duke Math J 133(3): 405-466, 2006). As a by-product, we also give an alternative proof of the stability of the single traveling wave in the energy space in Colin andOhta (Ann Inst Henri Poincare Anal Non Lineaire 23(5): 753-764, 2006), where Colin and Ohta made use of the concentration-compactness argument.
引用
收藏
页数:48
相关论文
共 40 条
[1]  
Ambrosetti A, 2007, CAMBRIDGE STUDIES AD
[2]  
Angulo Pava J., 2009, Nonlinear Dispersive Equations: Existence and Stability of Solitary and Periodic Travelling Wave Solutions
[3]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[4]   Ill-posedness for the derivative Schrodinger and generalized Benjamin-Ono equations [J].
Biagioni, HA ;
Linares, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (09) :3649-3659
[5]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[6]  
CAZENAVE T, 2003, COURANT I MATH SCI, V10
[7]   Stability of solitary waves for derivative nonlinear Schrodinger equation [J].
Colin, Mathieu ;
Ohta, Masahito .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05) :753-764
[8]   A refined global well-posedness result for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (01) :64-86
[9]   Global well-posedness for Schrodinger equations with derivative [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) :649-669
[10]  
El Dika K., 2004, DYNAM PART DIFFER EQ, V1, P401