Sparse and stable Markowitz portfolios

被引:275
作者
Brodie, Joshua [1 ]
Daubechies, Ingrid [1 ,2 ]
De Mol, Christine [3 ]
Giannone, Domenico [4 ,5 ]
Loris, Ignace [3 ,6 ]
机构
[1] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[3] Univ Libre Bruxelles, Dept Math, European Ctr Adv Res Econ & Stat, B-1050 Brussels, Belgium
[4] European Cent Bank, European Ctr Adv Res Econ & Stat, London EC1V ODG, England
[5] Ctr Econ Policy Res, London EC1V ODG, England
[6] Vrije Univ Brussel, Dept Math, B-1050 Brussels, Belgium
基金
美国国家科学基金会;
关键词
penalized regression; portfolio choice; sparsity; SHRINKAGE; SELECTION;
D O I
10.1073/pnas.0904287106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the problem of portfolio selection within the classical Markowitz mean-variance framework, reformulated as a constrained least-squares regression problem. We propose to add to the objective function a penalty proportional to the sum of the absolute values of the portfolio weights. This penalty regularizes (stabilizes) the optimization problem, encourages sparse portfolios (i.e., portfolios with only few active positions), and allows accounting for transaction costs. Our approach recovers as special cases the no-short-positions portfolios, but does allow for short positions in limited number. We implement this methodology on two benchmark data sets constructed by Fama and French. Using only a modest amount of training data, we construct portfolios whose out-of-sample performance, as measured by Sharpe ratio, is consistently and significantly better than that of the naive evenly weighted portfolio.
引用
收藏
页码:12267 / 12272
页数:6
相关论文
共 15 条
  • [1] [Anonymous], 1997, The econometrics of financial markets, DOI DOI 10.1515/9781400830213
  • [2] BERTERO M., 1998, Introduction to Inverse Problems in Imaging, DOI [10.1201/9781003032755, DOI 10.1201/9781003032755]
  • [3] BRODIE J, 2007, ARXIV07080046V1
  • [4] Atomic decomposition by basis pursuit
    Chen, SSB
    Donoho, DL
    Saunders, MA
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) : 33 - 61
  • [5] An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    Daubechies, I
    Defrise, M
    De Mol, C
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) : 1413 - 1457
  • [6] Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?
    De Mol, Christine
    Giannone, Domenico
    Reichlin, Lucrezia
    [J]. JOURNAL OF ECONOMETRICS, 2008, 146 (02) : 318 - 328
  • [7] DEMIGUEL V, 2007, REV FINANCIAL STUD
  • [8] A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms
    DeMiguel, Victor
    Garlappi, Lorenzo
    Nogales, Francisco J.
    Uppal, Raman
    [J]. MANAGEMENT SCIENCE, 2009, 55 (05) : 798 - 812
  • [9] Least angle regression - Rejoinder
    Efron, B
    Hastie, T
    Johnstone, I
    Tibshirani, R
    [J]. ANNALS OF STATISTICS, 2004, 32 (02) : 494 - 499
  • [10] Risk reduction in large portfolios: Why imposing the wrong constraints helps
    Jagannathan, R
    Ma, TS
    [J]. JOURNAL OF FINANCE, 2003, 58 (04) : 1651 - 1683