A new adaptive Barzilai and Borwein method for unconstrained optimization

被引:17
作者
Liu, Hongwei [1 ]
Liu, Zexian [1 ,2 ]
Dong, Xiaoliang [3 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710126, Shaanxi, Peoples R China
[2] Hezhou Univ, Sch Math & Comp Sci, Hezhou 542899, Peoples R China
[3] Beifang Univ Nationalities, Sch Math & Informat, Yinchuan 710021, Peoples R China
基金
美国国家科学基金会;
关键词
Barzilai and Borwein (BB) method; Adaptive stepsize; Nonmonotone line search; Broyden class update formula; Strictly convex quadratic minimization; LINE SEARCH TECHNIQUE; GRADIENT METHODS; STEPSIZE;
D O I
10.1007/s11590-017-1150-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we view the Barzilai and Borwein (BB) method from a new angle, and present a new adaptive Barzilai and Borwein (NABB) method with a nonmonotone line search for general unconstrained optimization. In the proposed method, the scalar approximation to the Hessian matrix is updated by the Broyden class formula to generate an adaptive stepsize. It is remarkable that the new stepsize is chosen adaptively in the interval which contains the two well-known BB stepsizes. Moreover, for the negative curvature direction, a strategy for the choice of the stepsize is designed to accelerate the convergence rate of the NABB method. Furthermore, we apply the NABB method without any line search to strictly convex quadratic minimization. The numerical experiments show the NABB method is very promising.
引用
收藏
页码:845 / 873
页数:29
相关论文
共 29 条
[1]  
Andrei N., 2008, ADV MODEL OPTIM, V10, P147, DOI DOI 10.1021/es702781x
[2]   2-POINT STEP SIZE GRADIENT METHODS [J].
BARZILAI, J ;
BORWEIN, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :141-148
[3]   Scaling on the Spectral Gradient Method [J].
Biglari, Fahimeh ;
Solimanpur, Maghsud .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 158 (02) :626-635
[4]   New quasi-Newton methods via higher order tensor models [J].
Biglari, Fahimeh ;
Abu Hassan, Malik ;
Leong, Wah June .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) :2412-2422
[5]   Nonmonotone spectral projected gradient methods on convex sets [J].
Birgin, EG ;
Martínez, JM ;
Raydan, M .
SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (04) :1196-1211
[6]   Spectral Projected Gradient Methods: Review and Perspectives [J].
Birgin, Ernesto G. ;
Martinez, Jose Mario ;
Raydan, Marcos .
JOURNAL OF STATISTICAL SOFTWARE, 2014, 60 (03) :1-21
[7]  
Cauchy A., 1847, COMP REND SCI PARIS, V25, P46
[8]   Alternate step gradient method [J].
Dai, YH .
OPTIMIZATION, 2003, 52 (4-5) :395-415
[9]   Modified two-point stepsize gradient methods for unconstrained optimization [J].
Dai, YH ;
Yuan, JY ;
Yuan, YX .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 22 (01) :103-109
[10]   R-linear convergence of the Barzilai and Borwein gradient method [J].
Dai, YH ;
Liao, LZ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (01) :1-10