Hybridized Electromagnetic-Triboelectric Nanogenerator for a Self-Powered Electronic Watch

被引:179
|
作者
Quan, Ting [1 ]
Wang, Xue [1 ]
Wang, Zhong Lin [1 ,2 ]
Yang, Ya [1 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
hybridized; electromagnetic; triboelectric; self-powered; electronic watch; SCAVENGING BIOMECHANICAL ENERGY; HARVESTING MECHANICAL ENERGY; GENERATING ELECTRICITY; WEARABLE ELECTRONICS; WALKING; SENSOR;
D O I
10.1021/acsnano.5b05598
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a hybridized nanogenerator including a triboelectric nanogenerator (TENG) and six electromagnetic generators (EMGs) that can effectively scavenge biomechanical energy for sustainably powering an electronic watch. Triggered by the natural motions of the wearer's wrist, a magnetic ball at the center in an acrylic box with coils on each side will collide with the walls, resulting in outputs from both the EMGs and the TENG. By using the hybridized nanogenerator to harvest the biomechanical energy, the electronic watch can be continuously powered under different motion types of the wearer's wrist, where the best approach is to charge a 100 mu F capacitor in 39s to maintain the continuous operation of the watch for 456 s. To increase the working time of the watch further, a homemade Li-ion battery has been utilized as the energy storage unit for realizing the continuous working of the watch for about 218 min by using the hybridized nanogenerator to charge the battery within 32 min. This work will provide the opportunities for developing a nanogenerator-based built-in power source for self-powered wearable electronics such as an electronic watch.
引用
收藏
页码:12301 / 12310
页数:10
相关论文
共 50 条
  • [1] A flexible hybridized electromagnetic-triboelectric multi-purpose self-powered sensor
    Askari, Hassan
    Saadatnia, Zia
    Asadi, Ehsan
    Khajepour, Amir
    Khamesee, Mir Behrad
    Zu, Jean
    NANO ENERGY, 2018, 45 : 319 - 329
  • [2] A hybridized electromagnetic-triboelectric self-powered sensor for traffic monitoring: concept, modelling, and optimization
    Askari, Hassan
    Asadi, Ehsan
    Saadatnia, Zia
    Khajepour, Amir
    Khamesee, Mir Behrad
    Zu, Jean
    NANO ENERGY, 2017, 32 : 105 - 116
  • [3] A self-powered vibration sensor for downhole drilling tools based on hybrid electromagnetic-triboelectric nanogenerator
    Wu, Chuan
    Yang, Shuo
    Wen, Guojun
    Fan, Chenxing
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (05):
  • [4] Self-Powered Sensing for Smart Agriculture by Electromagnetic-Triboelectric Hybrid Generator
    Zhang, Baosen
    Zhang, Sheng
    Li, Wenbo
    Gao, Qi
    Zhao, Da
    Wang, Zhong Lin
    Cheng, Tinghai
    ACS NANO, 2021, 15 (12) : 20278 - 20286
  • [5] A Shared-Electrode-Based Hybridized Electromagnetic-Triboelectric Nanogenerator
    Quan, Ting
    Wang, Zhong Lin
    Yang, Ya
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (30) : 19573 - 19578
  • [6] Effective energy storage from a hybridized electromagnetic-triboelectric nanogenerator
    Wang, Xue
    Yang, Ya
    NANO ENERGY, 2017, 32 : 36 - 41
  • [7] A paper triboelectric nanogenerator for self-powered electronic systems
    Mao, Yanchao
    Zhang, Nan
    Tang, Yingjie
    Wang, Meng
    Chao, Mingju
    Liang, Erjun
    NANOSCALE, 2017, 9 (38) : 14499 - 14505
  • [8] A soft-contact hybrid electromagnetic-triboelectric nanogenerator for self-powered water splitting towards hydrogen production
    Ma, Fuxue
    Wu, Yingjie
    Dai, Shuge
    Lin, Pei
    Sun, Junlu
    Dong, Lin
    NANO RESEARCH, 2024, 17 (07) : 6567 - 6574
  • [9] Multi-cylinder-based hybridized electromagnetic-triboelectric nanogenerator harvesting multiple fluid energy for self-powered pipeline leakage monitoring and anticorrosion protection
    Zhong, Yiming
    Guo, Yuanchao
    Wei, Xiaoxiang
    Rui, Pinshu
    Du, Hejun
    Wang, Peihong
    NANO ENERGY, 2021, 89
  • [10] Energy harvesting and wireless power transmission by a hybridized electromagnetic-triboelectric nanogenerator
    Chen, Yandong
    Cheng, Yu
    Jie, Yang
    Cao, Xia
    Wang, Ning
    Wan, Zhong Lin
    ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (09) : 2678 - 2684