Generalized Kahler geometry from supersymmetric sigma models

被引:36
作者
Bredthauer, Andreas
Lindstrom, Ulf
Persson, Jonas
Zabzine, Maxim
机构
[1] Uppsala Univ, Dept Theoret Phys, S-75108 Uppsala, Sweden
[2] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Suomi, Finland
关键词
generalized kahler geometry; supersymmetric sigma models;
D O I
10.1007/s11005-006-0099-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a physical derivation of generalized Kahler geometry. Starting from a supersymmetric nonlinear sigma model, we rederive and explain the results of Gualtieri (Generalized complex geometry, DPhil thesis, Oxford University, 2004) regarding the equivalence between generalized Kahler geometry and the bi-hermitean geometry of Gates et al. (Nucl Phys B248:157, 1984). When cast in the language of supersymmetric sigma models, this relation maps precisely to that between the Lagrangian and the Hamiltonian formalisms. We also discuss topological twist in this context.
引用
收藏
页码:291 / 308
页数:18
相关论文
共 20 条
[1]  
Alekseev A, 2005, J HIGH ENERGY PHYS
[2]   RICCI-FLAT KAHLER-MANIFOLDS AND SUPERSYMMETRY [J].
ALVAREZGAUME, L ;
FREEDMAN, DZ .
PHYSICS LETTERS B, 1980, 94 (02) :171-173
[3]   Generalized complex geometry and the Poisson Sigma model [J].
Bergamin, L .
MODERN PHYSICS LETTERS A, 2005, 20 (13) :985-995
[4]  
BONECHI F, IN PRESS ADV THEOR M
[5]  
Bonelli G, 2005, J HIGH ENERGY PHYS
[6]  
Bredthauer A, 2006, J HIGH ENERGY PHYS
[7]   NEW SUPERSYMMETRIC SIGMA-MODELS WITH WESS-ZUMINO TERMS [J].
BUSCHER, T ;
LINDSTROM, U ;
ROCEK, M .
PHYSICS LETTERS B, 1988, 202 (01) :94-98
[8]  
Calvo I., ARXIVHEPTH0511179
[9]   TWISTED MULTIPLETS AND NEW SUPERSYMMETRIC NON-LINEAR SIGMA-MODELS [J].
GATES, SJ ;
HULL, CM ;
ROCEK, M .
NUCLEAR PHYSICS B, 1984, 248 (01) :157-186
[10]  
GUALTIERI M, 2004, ARXIVMATHDG0401221