Practical optimal state feedback control law for continuous-time switched affine systems with cyclic steady state

被引:33
作者
Patino, D. [1 ]
Riedinger, P. [1 ]
Iung, C. [1 ]
机构
[1] Nancy Univ, CRAN, Vandoeuvre Les Nancy, France
关键词
optimal control; singular control; state feedback; switched affine systems; neural network; power converters; SLIDING MODE CONTROL; STABILITY; COMPUTATION; CONVERTERS; PRINCIPLE; ORDER;
D O I
10.1080/00207170802563280
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, a method for computing an optimal state feedback control law for continuous-time switched affine systems exhibiting cyclic behaviour in steady state is presented. The hybrid solutions are deduced from the Fillipov solutions. It is shown that the optimal trajectory synthesis implies to determine singular arcs. Algebraic conditions are given to obtain these particular arcs of the trajectory. A numerical procedure is then proposed to generate optimal trajectories on a given state space area avoiding the classical two-point boundary value problem occurring in optimal control synthesis. The interpolation of the solutions set, through a neural network, yields a state feedback control law. Several examples in the power converters field show the feasibility and the efficiency of the method.
引用
收藏
页码:1357 / 1376
页数:20
相关论文
共 71 条
[1]  
Ahmed M, 2003, IEEE POWER ELECTRON, P634
[2]  
ALMER S, 2007, P IEEE 26 AM CONTR C, V1, P5450
[3]  
[Anonymous], 1969, Topics in Mathematical System Theory
[4]  
[Anonymous], 1997, Relaxation in Optimization Theory and Variational Calculus
[5]  
BAJA M, 2007, P 26 IEEE AM CONTR C, P5458
[6]  
BECCUTI A, 2007, P 37 IEEE POW EL SPE, V1, P2503
[7]  
Bemporad A, 2002, IEEE DECIS CONTR P, P1976, DOI 10.1109/CDC.2002.1184817
[8]  
BEMPORAD A, 2000, IEEE T AUTOMATIC CON, V4, P3966
[9]  
Berkowitz L., 1974, OPTIMAL CONTROL THEO
[10]  
BETHOUX O, 2006, C INT FRANC AUT BORD