Six-dimensional Painleve systems and their particular solutions in terms of rigid systems

被引:4
作者
Suzuki, Takao [1 ]
机构
[1] Kinki Univ, Dept Math, Higashiosaka, Osaka 5778502, Japan
关键词
DIFFERENTIAL-EQUATIONS; ORDER; DEFORMATION; HIERARCHIES;
D O I
10.1063/1.4898766
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, we propose a class of six-dimensional Painleve systems given as the monodromy preserving deformations of the Fuchsian systems. They are expressed as polynomial Hamiltonian systems of sixth order. We also discuss their particular solutions in terms of the hypergeometric functions defined by fourth order rigid systems. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:30
相关论文
共 26 条
[1]  
[Anonymous], 1912, Ann. Sci. uNS
[3]  
Fuji K, 2013, J NONLINEAR MATH PHY, V20, P57, DOI 10.1080/14029251.2013.862434
[4]   Drinfeld-Sokolov Hierarchies of Type A and Fourth Order Painleve Systems [J].
Fuji, Kenta ;
Suzuki, Takao .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2010, 53 (01) :143-167
[5]   Coupled Painleve VI system with E6(1)-symmetry [J].
Fuji, Kenta ;
Suzuki, Takao .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (14)
[6]   Higher Order Painleve System of Type D2n+2(1) Arising from Integrable Hierarchy [J].
Fuji, Kenta ;
Suzuki, Takao .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
[7]   Middle convolution and deformation for Fuchsian systems [J].
Haraoka, Yoshishige ;
Filipuk, Galina .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 76 :438-450
[8]  
Iwasaki Katsunori, 1991, Aspects of Mathematics, VE16
[9]  
Jimbo M., 1980, Physica D, V1D, P80, DOI 10.1016/0167-2789(80)90006-8
[10]   MONODROMY PRESERVING DEFORMATION OF LINEAR ORDINARY DIFFERENTIAL-EQUATIONS WITH RATIONAL COEFFICIENTS .1. GENERAL-THEORY AND TAU-FUNCTION [J].
JIMBO, M ;
MIWA, T ;
UENO, K .
PHYSICA D, 1981, 2 (02) :306-352