Engineering self-assembled N-doped graphene-carbon nanotube composites towards efficient oxygen reduction electrocatalysts

被引:27
作者
Zhang, Yun [1 ,2 ]
Jiang, Wen-Jie [1 ,2 ]
Zhang, Xing [2 ]
Guo, Lin [1 ,2 ]
Hu, Jin-Song [2 ]
Wei, Zidong [1 ]
Wan, Li-Jun [2 ]
机构
[1] Chongqing Univ, Coll Chem & Chem Engn, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R China
[2] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Key Lab Mol Nanostruct & Nanotechnol, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL-FREE ELECTROCATALYSTS; NITROGEN; PERFORMANCE; OXIDE; CATALYSTS; NANOPARTICLES; BATTERIES; HYBRID; POLYANILINE; PHOSPHORUS;
D O I
10.1039/c4cp00757c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The importance of the oxygen reduction reaction (ORR) in fuel cells and high energy density metal-air batteries has attracted intense research interests in looking for low-cost ORR catalysts as substitutes for expensive and scarce Pt-based catalysts. N-doped graphene and carbon nanotubes prepared in a low-cost and scalable way have demonstrated their potential although the performance still needs to be improved. In view of the requirements for a high-performance ORR electrocatalyst, this work focused on developing the nanocomposites of N-doped reduced graphene oxide (N-rGO) and N-doped carbon nanotubes (N-CNT) as low-cost efficient ORR catalysts by integrating the advantages of abundant highly-active sites from N-rGO and a three-dimensional conductive network for efficient mass and electron transport from N-CNT. By optimizing the preparation method and dedicatedly tuning the composition, the much enhanced ORR activity and superior durability and tolerance to methanol were achieved for the self-assembled N-doped composite (N-rGO-CNT) at amass ratio of 1 : 5 rGO/CNT. Further improvement of the ORR electrocatalytic activity of the composite was also demonstrated by introducing iron into the composite.
引用
收藏
页码:13605 / 13609
页数:5
相关论文
共 36 条
[1]   Sp2 C-Dominant N-Doped Carbon Sub-micrometer Spheres with a Tunable Size: A Versatile Platform for Highly Efficient Oxygen-Reduction Catalysts [J].
Ai, Kelong ;
Liu, Yanlan ;
Ruan, Changping ;
Lu, Lehui ;
Lu, Gaoqing .
ADVANCED MATERIALS, 2013, 25 (07) :998-1003
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Morphology control and shape evolution in 3D hierarchical superstructures [J].
Cao AnMin ;
Hu JinSong ;
Wan LiJun .
SCIENCE CHINA-CHEMISTRY, 2012, 55 (11) :2249-2256
[4]   Solvothermal Synthesis of Platinum Alloy Nanoparticles for Oxygen Reduction Electrocatalysis [J].
Carpenter, Michael K. ;
Moylan, Thomas E. ;
Kukreja, Ratandeep Singh ;
Atwan, Mohammed H. ;
Tessema, Misle M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (20) :8535-8542
[5]   A Nitrogen-Doped Graphene/Carbon Nanotube Nanocomposite with Synergistically Enhanced Electrochemical Activity [J].
Chen, Ping ;
Xiao, Tian-Yuan ;
Qian, Yu-Hong ;
Li, Shan-Shan ;
Yu, Shu-Hong .
ADVANCED MATERIALS, 2013, 25 (23) :3192-3196
[6]   Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity [J].
Choi, Chang Hyuck ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
ACS NANO, 2012, 6 (08) :7084-7091
[7]   Mesoporous Ti0.5Nb0.5N Ternary Nitride as a Novel Noncarbon Support for Oxygen Reduction Reaction in Acid and Alkaline Electrolytes [J].
Cui, Zhiming ;
Burns, Raymond G. ;
DiSalvo, Francis J. .
CHEMISTRY OF MATERIALS, 2013, 25 (19) :3782-3784
[8]   Space-Confinement-Induced Synthesis of Pyridinic- and Pyrrolic-Nitrogen-Doped Graphene for the Catalysis of Oxygen Reduction [J].
Ding, Wei ;
Wei, Zidong ;
Chen, Siguo ;
Qi, Xueqiang ;
Yang, Tao ;
Hu, Jinsong ;
Wang, Dong ;
Wan, Li-Jun ;
Alvi, Shahnaz Fatima ;
Li, Li .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (45) :11755-11759
[9]   Co/CoO Nanoparticles Assembled on Graphene for Electrochemical Reduction of Oxygen [J].
Guo, Shaojun ;
Zhang, Sen ;
Wu, Liheng ;
Sun, Shouheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (47) :11770-11773
[10]   Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow batteries [J].
Han, Pengxian ;
Yue, Yanhua ;
Liu, Zhihong ;
Xu, Wei ;
Zhang, Lixue ;
Xu, Hongxia ;
Dong, Shanmu ;
Cui, Guanglei .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (11) :4710-4717