An Information-Based Approach to the Change-Point Problem of the Noncentral Skew t Distribution with Applications to Stock Market Data

被引:12
作者
Hasan, Abeer [1 ]
Ning, Wei [2 ]
Gupta, Arjun K. [2 ]
机构
[1] Humboldt State Univ, Dept Math, Arcata, CA USA
[2] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
来源
SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS | 2014年 / 33卷 / 04期
关键词
Change-point; Maximum likelihood estimate; Schwarz information criterion; Skew t distribution; 62L10; 62F03; 62F05; 60P20; MODEL; REGRESSION; PARAMETER; TESTS;
D O I
10.1080/07474946.2014.961842
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The change-point problem for the noncentral skew t distribution is studied in this article. An approach based on Schwartz information criterion (SIC) is used to detect the changes of the parameters of this distribution. Simulations are conducted to illustrate the performance of the proposed procedure. The method is successfully applied to the stock returns of several Latin American countries.
引用
收藏
页码:458 / 474
页数:17
相关论文
共 27 条
  • [1] Akaike H., 1973, 2 INT S INFORM THEOR, P267
  • [2] [Anonymous], 1997, LIMIT THEOREMS CHANG
  • [3] Change Point Detection in The Skew-Normal Model Parameters
    Arellano-Valle, Reinaldo B.
    Castro, Luis M.
    Loschi, Rosangela H.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (04) : 603 - 618
  • [4] The multivariate skew-normal distribution
    Azzalini, A
    DallaValle, A
    [J]. BIOMETRIKA, 1996, 83 (04) : 715 - 726
  • [5] AZZALINI A, 1985, SCAND J STAT, V12, P171
  • [6] Chen J, 2012, PARAMETRIC STAT CHAN
  • [7] Chen J., 2000, PARAMETRIC STAT CHAN
  • [8] A semiparametric changepoint model
    Guan, Z
    [J]. BIOMETRIKA, 2004, 91 (04) : 849 - 862
  • [9] A class of multivariate skew-normal models
    Gupta, AK
    Chen, JT
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2004, 56 (02) : 305 - 315
  • [10] Change point problems in the model of logistic regression
    Gurevich, G
    Vexler, A
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 131 (02) : 313 - 331