An upper bound for entropy of discrete distributions having assigned moments

被引:1
作者
Tagliani, A [1 ]
机构
[1] Univ Trent, Fac Econ, I-38100 Trento, Italy
关键词
entropy; Hankel matrix; moment-generating function; moment problem; Z transform;
D O I
10.1016/S0096-3003(01)00232-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Discrete probability distributions having finite or countable range and assigned the first algebraic moments are considered. An entropy upper bound uniquely in terms of assigned moments is provided. Some particular cases are analytically treated. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:159 / 170
页数:12
相关论文
共 8 条
[1]  
[Anonymous], 1992, ENTROPY OPTIMIZATION, DOI DOI 10.1007/978-94-011-2430
[2]  
[Anonymous], 1975, THEORY QUEUEING SYST
[3]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[4]   On some inequalities for entropies of discrete probability distributions [J].
Jardas, C ;
Pecaric, J ;
Roki, R ;
Sarapa, N .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1999, 40 :535-541
[5]  
Jaynes E.T., 1979, The maximum entropy principle, P15
[6]   Inverse z transform and moment problem [J].
Tagliani, A .
PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2000, 14 (03) :393-404
[7]  
TAGLIANI A, 1998, STATISTICA, V58, P109
[8]  
Whittaker E. T., 1969, A course of modern analysis