Integrin traffic

被引:170
作者
Pellinen, Teijo [1 ]
Ivaska, Johanna [1 ]
机构
[1] VTT Med Biotechnol, FIN-20520 Turku, Finland
关键词
integrin; migration; trafficking; Rab GTPases;
D O I
10.1242/jcs.03216
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cell adhesion, migration and the maintenance of cell polarity are all processes that depend on the correct targeting of integrins and the dynamic remodelling of integrin-containing adhesion sites. The importance of the endo/exocytic cycle of integrins as a key regulator of these functions is increasingly recognized. Several recent publications have provided mechanistic insight into how integrin traffic is regulated in cells. Increasing evidence suggests that small GTPases such as Arf6 and members of the Rab family control integrin internalization and recycling back to the plasma membrane along microtubules. The fine tuning of these trafficking events seems to be mediated by specific guanine-nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs). In addition, several kinases regulate integrin traffic. The identification of their substrates has demonstrated how these kinases regulate integrin traffic by controlling small GTPases or stabilizing cytoskeletal tracks that are crucial for efficient traffic of integrins to the plasma membrane.
引用
收藏
页码:3723 / 3731
页数:9
相关论文
共 151 条
[1]   Cellular invasion by Staphylococcus aureus reveals a functional link between focal adhesion kinase and cortactin in integrin-mediated internalisation [J].
Agerer, F ;
Lux, S ;
Michel, A ;
Rohde, M ;
Ohlsen, K ;
Hauck, CR .
JOURNAL OF CELL SCIENCE, 2005, 118 (10) :2189-2200
[2]   CLASPs are CLIP-115 and-170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts [J].
Akhmanova, A ;
Hoogenraad, CC ;
Drabek, K ;
Stepanova, T ;
Dortland, B ;
Verkerk, T ;
Vermeulen, W ;
Burgering, BM ;
De Zeeuw, CI ;
Grosveld, F ;
Galjart, N .
CELL, 2001, 104 (06) :923-935
[3]   Kaposi's sarcoma-associated herpesvirus (Human herpesvirus 8) infection of human fibroblast cells occurs through endocytosis [J].
Akula, SM ;
Naranatt, PP ;
Walia, NS ;
Wang, FZ ;
Fegley, B ;
Chandran, B .
JOURNAL OF VIROLOGY, 2003, 77 (14) :7978-7990
[4]   Integrin α3β1 (CD 49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells [J].
Akula, SM ;
Pramod, NP ;
Wang, FZ ;
Chandran, B .
CELL, 2002, 108 (03) :407-419
[5]   Involvement of focal adhesion kinase in invasin-mediated uptake [J].
Alrutz, MA ;
Isberg, RR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (23) :13658-13663
[6]   Efficient uptake of Yersinia pseudotuberculosis via integrin receptors involves a Rac1-Arp 2/3 pathway that bypasses N-WASP function [J].
Alrutz, MA ;
Srivastava, A ;
Wong, KW ;
D'Souza-Schorey, C ;
Tang, M ;
Ch'ng, LE ;
Snapper, SB ;
Isberg, RR .
MOLECULAR MICROBIOLOGY, 2001, 42 (03) :689-703
[7]   YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis [J].
Andersson, K ;
Carballeira, N ;
Magnusson, KE ;
Persson, C ;
Stendahl, O ;
WolfWatz, H ;
Fallman, M .
MOLECULAR MICROBIOLOGY, 1996, 20 (05) :1057-1069
[8]   Mutagenesis of the phosphatidylinositol 4,5-bisphosphate (PIP2) binding site in the NH2-terminal domain of ezrin correlates with its altered cellular distribution [J].
Barret, C ;
Roy, C ;
Montcourrier, P ;
Mangeat, P ;
Niggli, V .
JOURNAL OF CELL BIOLOGY, 2000, 151 (05) :1067-1079
[9]   ANTIBODIES TO THE VITRONECTIN RECEPTOR (INTEGRIN ALPHA(V)BETA(3)) INHIBIT BINDING AND INFECTION OF FOOT-AND-MOUTH-DISEASE VIRUS TO CULTURED-CELLS [J].
BERINSTEIN, A ;
ROIVAINEN, M ;
HOVI, T ;
MASON, PW ;
BAXT, B .
JOURNAL OF VIROLOGY, 1995, 69 (04) :2664-2666
[10]   Early events in integrin αvβ6-mediated cell entry of foot-and-mouth disease virus [J].
Berryman, S ;
Clark, S ;
Monaghan, P ;
Jackson, T .
JOURNAL OF VIROLOGY, 2005, 79 (13) :8519-8534