Comments on finite-time stability of time-delay systems

被引:93
作者
Efimov, Denis [1 ,2 ,4 ]
Polyakov, Andrey [1 ,2 ]
Fridman, Emilia [3 ]
Perruquetti, Wilfrid [1 ,2 ]
Richard, Jean-Pierre [1 ,2 ]
机构
[1] INRIA LNE, Non A Team, F-59650 Villeneuve Dascq, France
[2] Ecole Cent Lille, LAGIS, UMR CNRS 8219, F-59651 Villeneuve Dascq, France
[3] Tel Aviv Univ, Sch Elect Engn, IL-69978 Tel Aviv, Israel
[4] Univ ITMO, Dept Control Syst & Informat, St Petersburg 197101, Russia
基金
以色列科学基金会;
关键词
Time-delay systems; Finite-time stability; The Lyapunov-Razumikhin method; STABILIZATION; DESIGN;
D O I
10.1016/j.automatica.2014.05.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently proposed conditions on finite-time stability in time-delay systems are revisited and it is shown that they are incorrect. General comments on possibility of finite-time convergence in time-delay systems and a necessary condition are given. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1944 / 1947
页数:4
相关论文
共 19 条
[1]   Homogeneous approximation, recursive observer design, and output feedback [J].
Andrieu, Vincent ;
Praly, Laurent ;
Astolfi, Alessandro .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (04) :1814-1850
[2]   Geometric homogeneity with applications to finite-time stability [J].
Bhat, SP ;
Bernstein, DS .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2005, 17 (02) :101-127
[3]  
Chiasson J., 2007, LECT NOTES CONTROL I, V352
[4]   An overview of finite-time stability [J].
Dorato, P .
CURRENT TRENDS IN NONLINEAR SYSTEMS AND CONTROL: IN HONOR OF PETAR KOKOTOVIC AND TURI NICOSIA, 2006, :185-194
[5]  
Elsgolts L.E., 1973, Introduction to the Theory of Differential Equations with Deviated Argument
[6]  
Erneux T., 2009, Applied delay differential equations, V3
[7]  
GU K., 2003, CONTROL ENGN SER BIR
[8]  
Hale J.K., 1977, THEORY FUNCTIONAL DI
[9]   Finite-time global stabilization by means of time-varying distributed delay feedback [J].
Karafyllis, I .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (01) :320-342
[10]  
Kolmanovski V., 1999, MATH APPL, V463, DOI 10.1007/978-94-017-1965-0