Cohomological dimension and relative Cohen-Maculayness

被引:6
作者
Divaani-Aazar, Kamran [1 ,2 ]
Doust, Akram Ghanbari [3 ]
Tousi, Massoud [2 ,4 ]
Zakeri, Hossein [3 ]
机构
[1] Alzahra Univ, Dept Math, Tehran 19834, Iran
[2] Inst Res Fundamental Sci IPM, Iran And Sch Math, Tehran, Iran
[3] Kharazmi Univ, Fac Math Sci & Comp, Tehran, Iran
[4] Shahid Beheshti Univ, Dept Math, GC, Tehran, Iran
关键词
Arithmetic rank; cohomological dimension; generalized fractions; local cohomology; relative Cohen-Macaulay module; system of parameters; MATLIS DUALS; MODULES; MACAULAYNESS; IDEALS; RANK;
D O I
10.1080/00927872.2019.1623242
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative Noetherian (not necessary local) ring with identity and be a proper ideal of R. We introduce a notion of -relative system of parameters and characterize them by using the notion of cohomological dimension. Also, we present a criterion of relative Cohen-Macaulay modules via relative system of parameters.
引用
收藏
页码:5417 / 5427
页数:11
相关论文
共 22 条
[1]  
André Y, 2018, PUBL MATH-PARIS, V127, P1, DOI 10.1007/s10240-017-0096-x
[2]  
BARILE M, 2009, TOKYO J MATH, V32, P435, DOI DOI 10.3836/TJM/1264170241
[3]   On the Arithmetical Rank of the Edge Ideals of Forests [J].
Barile, Margherita .
COMMUNICATIONS IN ALGEBRA, 2008, 36 (12) :4678-4703
[4]  
Brodmann M.P., 2013, CAMBRIDGE STUDIES AD, V136
[5]  
Celikbas O, 2017, NEW YORK J MATH, V23, P1697
[6]   Cohomological dimension of certain algebraic varieties [J].
Divaani-Aazar, K ;
Naghipour, R ;
Tousi, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (12) :3537-3544
[7]   A characterization of systems of parameters [J].
Dutta, SP ;
Roberts, PC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (03) :671-675
[8]   On the associated primes of Matlis duals of top local cohomology modules [J].
Hellus, M .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (11) :3997-4009
[9]   On cohomologically complete intersections [J].
Hellus, Michael ;
Schenzel, Peter .
JOURNAL OF ALGEBRA, 2008, 320 (10) :3733-3748
[10]   Matlis duals of top local cohomology modules and the arithmetic rank of an ideal [J].
Hellus, Michael .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (04) :1421-1432