Silicon Oxycarbide-Tin Nanocomposite as a High-Power-Density Anode for Li-Ion Batteries

被引:53
作者
Dubey, Romain J. -C. [1 ,2 ]
Sasikumar, Pradeep Vallachira Warriam [3 ]
Krumeich, Frank [1 ,2 ]
Blugan, Gurdial [3 ]
Kuebler, Jakob [3 ]
Kravchyk, Kostiantyn V. [1 ,2 ]
Graule, Thomas [3 ]
Kovalenko, Maksym V. [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Lab Inorgan Chem, CH-8093 Zurich, Switzerland
[2] Empa, Swiss Fed Labs Mat Sci & Technol, Lab Thin Films & Photovolta, CH-8600 Dubendorf, Switzerland
[3] Empa, Swiss Fed Labs Mat Sci & Technol, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland
基金
欧盟地平线“2020”;
关键词
electrochemical energy storage; lithium; nanocomposites; silicon oxycarbide; tin metal; HIGH-PERFORMANCE LITHIUM; RICH SIOC ANODES; SN-C COMPOSITE; NEGATIVE ELECTRODES; ALLOY ANODES; CARBON; CAPACITY; STORAGE; CERAMICS; STABILITY;
D O I
10.1002/advs.201901220
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tin-based materials are an emerging class of Li-ion anodes with considerable potential for use in high-energy-density Li-ion batteries. However, the long-lasting electrochemical performance of Sn remains a formidable challenge due to the large volume changes occurring upon its lithiation. The prevailing approaches toward stabilization of such electrodes involve embedding Sn in the form of nanoparticles (NPs) in an active/inactive matrix. The matrix helps to buffer the volume changes of Sn, impart better electronic connectivity and prevent particle aggregation upon lithiation/delithiation. Herein, facile synthesis of Sn NPs embedded in a SiOC matrix via the pyrolysis of a preceramic polymer as a single-source precursor is reported. This polymer contains Sn 2-ethyl-hexanoate (Sn(Oct)(2)) and poly(methylhydrosiloxane) as sources of Sn and Si, respectively. Upon functionalization with apolar divinyl benzene sidechains, the polymer is rendered compatible with Sn(Oct)(2). This approach yields a homogeneous dispersion of Sn NPs in a SiOC matrix with sizes on the order of 5-30 nm. Anodes of the SiOC/Sn nanocomposite demonstrate high capacities of 644 and 553 mAh g(-1) at current densities of 74.4 and 2232 mA g(-1) (C/5 and 6C rates for graphite), respectively, and show superior rate capability with only 14% capacity decay at high currents.
引用
收藏
页数:9
相关论文
共 57 条
[11]   New Insights into Understanding Irreversible and Reversible Lithium Storage within SiOC and SiCN Ceramics [J].
Graczyk-Zajac, Magdalena ;
Reinold, Lukas Mirko ;
Kaspar, Jan ;
Sasikumar, Pradeep Vallachira Warriam ;
Soraru, Gian-Domenico ;
Riedel, Ralf .
NANOMATERIALS, 2015, 5 (01) :233-245
[12]   Phenyl-rich silicone oil as a precursor for SiOC anode materials for long-cycle and high-rate lithium ion batteries [J].
Halim, Martin ;
Hudaya, Chairul ;
Kim, A-Young ;
Lee, Joong Kee .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (07) :2651-2656
[13]   A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance [J].
Hassoun, Jusef ;
Derrien, Gaelle ;
Panero, Stefania ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2008, 20 (16) :3169-3175
[14]   Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb [J].
He, Meng ;
Walter, Marc ;
Kravchyk, Kostiantyn V. ;
Erni, Rolf ;
Widmer, Roland ;
Kovalenko, Maksym V. .
NANOSCALE, 2015, 7 (02) :455-459
[15]   Silicon/graphite composite electrodes for high-capacity anodes:: Influence of binder chemistry on cycling stability [J].
Hochgatterer, N. S. ;
Schweiger, M. R. ;
Koller, S. ;
Raimann, P. R. ;
Woehrle, T. ;
Wurm, C. ;
Winter, M. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (05) :A76-A80
[16]   Tin-based amorphous oxide: A high-capacity lithium-ion-storage material [J].
Idota, Y ;
Kubota, T ;
Matsufuji, A ;
Maekawa, Y ;
Miyasaka, T .
SCIENCE, 1997, 276 (5317) :1395-1397
[17]   Sn-carbon core-shell powder for anode in lithium secondary batteries [J].
Jung, YS ;
Lee, KT ;
Ryu, JH ;
Im, D ;
Oh, SM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (07) :A1452-A1457
[18]   Impact of the electrical conductivity on the lithium capacity of polymer-derived silicon oxycarbide (SiOC) ceramics [J].
Kaspar, Jan ;
Graczyk-Zajac, Magdalena ;
Choudhury, Soumyadip ;
Riedel, Ralf .
ELECTROCHIMICA ACTA, 2016, 216 :196-202
[19]   Stable SiOC/Sn Nanocomposite Anodes for Lithium-Ion Batteries with Outstanding Cycling Stability [J].
Kaspar, Jan ;
Terzioglu, Caglar ;
Ionescu, Emanuel ;
Graczyk-Zajac, Magdalena ;
Hapis, Stefania ;
Kleebe, Hans-Joachim ;
Riedel, Ralf .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (26) :4097-4104
[20]   Lithium insertion into carbon-rich SiOC ceramics: Influence of pyrolysis temperature on electrochemical properties [J].
Kaspar, Jan ;
Graczyk-Zajac, Magdalena ;
Riedel, Ralf .
JOURNAL OF POWER SOURCES, 2013, 244 :450-455