Polynomial chaos enrichment for analyzing stochastic systems with clustered eigenvalues

被引:0
作者
Ghosh, D. [1 ]
Ghanem, R. [1 ]
机构
[1] Johns Hopkins Univ, Dept Civil Engn, Baltimore, MD 21218 USA
来源
Structural Dynamics - EURODYN 2005, Vols 1-3 | 2005年
关键词
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The polynomial chaos decomposition has proven to be an efficient tool for characterizing the eigenspaces of stochastic dynamical with well-separated eigenvalues. For systems with closely spaced modes, difficulties arise due to the extreme sensitivity of the eigenvalues and corresponding eigenvectors to perturbations in the system dynamics, thus greatly taxing any polynomial approximation. An enrichment scheme to the standard polynomial chaos decomposition is proposed in this paper that permits the accurate resolution of this difficulty. Enrichment is provided through judiciously chosen functional forms with the enriched expansion providing a better stochastic characterization of the dominant eigenspace.
引用
收藏
页码:883 / 888
页数:6
相关论文
共 50 条
[31]   STOCHASTIC FINITE ELEMENT ANALYSIS USING POLYNOMIAL CHAOS [J].
Drakos, S. ;
Pande, G. N. .
STUDIA GEOTECHNICA ET MECHANICA, 2016, 38 (01) :33-43
[32]   Solution of a stochastic Darcy equation by polynomial chaos expansion [J].
Shalimova I.A. ;
Sabelfeld K.K. .
Numerical Analysis and Applications, 2017, 10 (03) :259-271
[33]   Stochastic PEEC Method Based on Polynomial Chaos Expansion [J].
Torchio, R. ;
Di Rienzo, L. ;
Codecasa, L. .
IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (06)
[34]   Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation [J].
M. Jardak ;
C.-H. Su ;
G. E. Karniadakis .
Journal of Scientific Computing, 2002, 17 :319-338
[35]   Sparse polynomial chaos expansion for universal stochastic kriging [J].
Garcia-Merino, J. C. ;
Calvo-Jurado, C. ;
Garcia-Macias, E. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 444
[36]   Stochastic stability with S-eigenvalues in stochastic systems [J].
Seo, YB ;
Choi, JW ;
Lee, DH .
ISIE 2001: IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS PROCEEDINGS, VOLS I-III, 2001, :1891-1895
[37]   A Piecewise Polynomial Chaos Approach to Stochastic Linear Quadratic Regulation for Systems with Probabilistic Parametric Uncertainties [J].
Wan, Yiming ;
Harinath, Eranda ;
Braatz, Richard D. .
2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
[38]   Distribution of eigenvalues of linear stochastic systems [J].
Adhikari, S ;
Langley, RS .
APPLICATIONS OF STATISTICS AND PROBABILITY IN CIVIL ENGINEERING, VOLS 1 AND 2, 2003, :201-207
[39]   Compressed Stochastic Macromodeling of Electrical Systems via Rational Polynomial Chaos and Principal Component Analysis [J].
Manfredi, Paolo ;
Grivet-Talocia, Stefano .
PROCEEDINGS OF THE 2021 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (APEMC 2021), 2021,
[40]   Feedback Control Design Maximizing the Region of Attraction of Stochastic Systems Using Polynomial Chaos Expansion [J].
Ahbe, Eva ;
Listov, Petr ;
Iannelli, Andrea ;
Smith, Roy S. .
IFAC PAPERSONLINE, 2020, 53 (02) :7197-7203