spliceJAC: transition genes and state-specific gene regulation from single-cell transcriptome data

被引:18
作者
Bocci, Federico [1 ,2 ]
Zhou, Peijie [1 ]
Nie, Qing [1 ,2 ,3 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92717 USA
[2] Univ Calif Irvine, NSF Simons Ctr Multiscale Cell Fate Res, Irvine, CA 92717 USA
[3] Univ Calif Irvine, Dept Dev & Cell Biol, Irvine, CA 92717 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
attractor linear stability; cell state transition; gene regulatory network; mRNA splicing; single-cell RNA sequencing; INFERENCE; NETWORKS; EMT; LANDSCAPE; TIME;
D O I
10.15252/msb.202211176
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Extracting dynamical information from single-cell transcriptomics is a novel task with the promise to advance our understanding of cell state transition and interactions between genes. Yet, theory-oriented, bottom-up approaches that consider differences among cell states are largely lacking. Here, we present spliceJAC, a method to quantify the multivariate mRNA splicing from single-cell RNA sequencing (scRNA-seq). spliceJAC utilizes the unspliced and spliced mRNA count matrices to constructs cell state-specific gene-gene regulatory interactions and applies stability analysis to predict putative driver genes critical to the transitions between cell states. By applying spliceJAC to biological systems including pancreas endothelium development and epithelial-mesenchymal transition (EMT) in A549 lung cancer cells, we predict genes that serve specific signaling roles in different cell states, recover important differentially expressed genes in agreement with pre-existing analysis, and predict new transition genes that are either exclusive or shared between different cell state transitions.
引用
收藏
页数:15
相关论文
共 75 条
  • [61] Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data
    Wang, Tianyu
    Li, Boyang
    Nelson, Craig E.
    Nabavi, Sheida
    [J]. BMC BIOINFORMATICS, 2019, 20 (1)
  • [62] Constructing local cell-specific networks from single-cell data
    Wang, Xuran
    Choi, David
    Roeder, Kathryn
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (51)
  • [63] Wang Y., 2022, ARXIV, DOI 10.48550/arXiv.2201.03164
  • [64] Inference on the structure of gene regulatory networks
    Wang, Yue
    Wang, Zikun
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2022, 539
  • [65] Cell-Type-Specific Gene Regulatory Networks Underlying Murine Neonatal Heart Regeneration at Single-Cell Resolution
    Wang, Zhaoning
    Cui, Miao
    Shah, Akansha M.
    Tan, Wei
    Liu, Ning
    Bassel-Duby, Rhonda
    Olson, Eric N.
    [J]. CELL REPORTS, 2020, 33 (10):
  • [66] Fundamental limits on dynamic inference from single-cell snapshots
    Weinreb, Caleb
    Wolock, Samuel
    Tusi, Betsabeh K.
    Socolovsky, Merav
    Klein, Allon M.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (10) : E2467 - E2476
  • [67] PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells
    Wolf, F. Alexander
    Hamey, Fiona K.
    Plass, Mireya
    Solana, Jordi
    Dahlin, Joakim S.
    Gottgens, Berthold
    Rajewsky, Nikolaus
    Simon, Lukas
    Theis, Fabian J.
    [J]. GENOME BIOLOGY, 2019, 20 (1) : 1 - 9
  • [68] SCANPY: large-scale single-cell gene expression data analysis
    Wolf, F. Alexander
    Angerer, Philipp
    Theis, Fabian J.
    [J]. GENOME BIOLOGY, 2018, 19
  • [69] SCNS: a graphical tool for reconstructing executable regulatory networks from single-cell genomic data
    Woodhouse, Steven
    Piterman, Nir
    Wintersteiger, Christoph M.
    Goettgens, Berthold
    Fisher, Jasmin
    [J]. BMC SYSTEMS BIOLOGY, 2018, 12
  • [70] clusterProfiler 4.0: A universal enrichment tool for interpreting omics data
    Wu, Tianzhi
    Hu, Erqiang
    Xu, Shuangbin
    Chen, Meijun
    Guo, Pingfan
    Dai, Zehan
    Feng, Tingze
    Zhou, Lang
    Tang, Wenli
    Zhan, Li
    Fu, Xiaocong
    Liu, Shanshan
    Bo, Xiaochen
    Yu, Guangchuang
    [J]. INNOVATION, 2021, 2 (03):