Numerical Solutions for Time-Fractional Cancer Invasion System With Nonlocal Diffusion

被引:33
作者
Manimaran, J. [1 ]
Shangerganesh, L. [1 ]
Debbouche, Amar [2 ]
Antonov, Valery [3 ]
机构
[1] Natl Inst Technol Goa, Dept Appl Sci, Farmagudi, Goa, India
[2] Guelma Univ, Dept Math, Guelma, Algeria
[3] Peter the Great St Petersburg Polytech Univ, Dept Math, St Petersburg, Russia
关键词
cancer invasion dynamic system; fractional differential equations; reaction-diffusion system; weak solution; numerical solution; FINITE-ELEMENT-METHOD; SPECTRAL METHOD; DIFFERENTIAL-EQUATIONS; VOLUME METHOD; TUMOR-GROWTH; SCHEME; SIMULATION; STABILITY; ALGORITHM;
D O I
10.3389/fphy.2019.00093
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article studies the existence and uniqueness of a weak solution of the time-fractional cancer invasion system with nonlocal diffusion operator. Existence and uniqueness results are ensured by adapting the Faedo-Galerkin method and some a priori estimates. Further, finite element numerical scheme is implemented for the considered system. Finally, various numerical computations are performed along with the convergence analysis of the scheme.
引用
收藏
页数:16
相关论文
共 59 条
[1]  
Ahmed E., 2012, Journal of Fractional Calculus and Applied Analysis, V3, P1
[2]   A priori estimates for solutions of boundary value problems for fractional-order equations [J].
Alikhanov, A. A. .
DIFFERENTIAL EQUATIONS, 2010, 46 (05) :660-666
[3]   A new difference scheme for the time fractional diffusion equation [J].
Alikhanov, Anatoly A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 :424-438
[4]   GRONWALL INEQUALITY FOR A GENERAL CAPUTO FRACTIONAL OPERATOR [J].
Almeida, Ricardo .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (04) :1089-1105
[5]  
[Anonymous], 1999, MATH SCI ENG
[6]   A history of the study of solid tumour growth: The contribution of mathematical modelling [J].
Araujo, RP ;
McElwain, DLS .
BULLETIN OF MATHEMATICAL BIOLOGY, 2004, 66 (05) :1039-1091
[7]   Anomalous transport in random fracture networks [J].
Berkowitz, B ;
Scher, H .
PHYSICAL REVIEW LETTERS, 1997, 79 (20) :4038-4041
[8]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[9]   Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation [J].
Clatz, O ;
Sermesant, M ;
Bondiau, PY ;
Delingette, H ;
Warfield, SK ;
Malandain, G ;
Ayache, N .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (10) :1334-1346
[10]   Algorithm 832: UMFPACK V4.3 - An unsymmetric-pattern multifrontal method [J].
Davis, TA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2004, 30 (02) :196-199